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Abstract: Aim: Based on a study comprising water reservoirs within the Brazilian Cerrado 
biome, we seek to answer the following question: how does phytoplankton communities respond to 
environmental, landscape, and spatial predictors? We expected local predictors to be the main factors 
structuring the communities. Since phytoplankton has high dispersal capacity, the geographical 
distance would be of minor importance. Methods: We collected phytoplankton samples from 40 
water reservoirs in the rainy season and 37 reservoirs in the dry season. We performed a partial 
Redundancy Analysis (pRDA) to evaluate the factors influencing the variation in the composition of 
phytoplankton communities. Results: We found that spatially structured environmental factors were 
controlling phytoplankton communities at the rainy season, whereas landscape was the main predictor 
in the dry season. On the other hand, phytoplankton morphofunctional groups were influenced only 
by local predictors. Conclusions: We demonstrated that phytoplankton dynamics differs between 
rainy and dry seasons, and that distinct predictors affect phytoplankton communities over seasons. 

Keywords: taxonomic classification; morphofunctional groups; water reservoirs; environmental 
variables; landscape; metacommunity theory.

Resumo: Objetivo: Com base em um estudo envolvendo reservatórios de água no bioma Cerrado 
brasileiro, buscamos responder a seguinte questão: como a comunidade fitoplanctônica responde a 
preditores ambientais, uso e ocupação do solo (paisagem) e preditores espaciais? Esperávamos que 
os preditores locais fossem os principais fatores estruturantes da comunidade. Como os organismos 
fitoplanctônicos têm grande capacidade de dispersão, a distância geográfica seria de menor importância. 
Métodos: Coletamos amostras de fitoplâncton de 40 reservatórios de água na estação chuvosa e em 
37 reservatórios na estação seca. Realizamos uma Análise de Redundância Parcial (pRDA) para avaliar 
os fatores que influenciam a variação na composição das comunidades fitoplanctônicas. Resultados: 
Na estação chuvosa, encontramos sinais de que fatores ambientais espacialmente estruturados estavam 
controlando as comunidades fitoplanctônica, enquanto a paisagem foi o principal preditor na estação 
seca. Por outro lado, os grupos morfofuncionais do fitoplâncton foram influenciados apenas por 
preditores locais. Conclusões: Demonstramos que a dinâmica das comunidades fitoplanctônicas difere 
na estação chuvosa e seca e que diferentes preditores afetam o fitoplâncton ao longo das estações do ano. 
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The metacommunity theory provides an 
approach that supports the investigation of the 
roles that dispersal processes and environmental 
heterogeneity play in structuring the dynamics 
of communities (Leibold  et  al., 2004). In this 
way, communities can be studied from a regional 
perspective, in which local (environmental 
heterogeneity) or regional (dispersal) factors can 
alter the structure of phytoplankton communities 
(Bie  et  al., 2012). Thus, the morphological 
characteristics of individuals may influence these 
dynamics mainly due to their relationship with 
dispersal capacity (Bortolini et al., 2019).

Among several factors that influence the 
dispersal capacity of organisms, the connectivity and 
the distance between water bodies are fundamental 
to the success of this process (Chisholm et al., 2011; 
Naselli-Flores  et  al., 2016). The management of 
water bodies must consider their position and size 
in the landscape to increase habitat connectivity 
(Izaguirre et al., 2016; Lamy et al., 2013; Lansac-
Tôha  et  al., 2016) and elaborate strategies for 
aquatic biodiversity conservation (Guan et al., 2019; 
Hill et al., 2019; Zhai et al., 2019).

In this study, we evaluated the influence of 
local variables (physical and chemical), as well as 
spatial predictors (distance between water bodies), 
and landscape predictors (land cover and use) on 
the composition of phytoplankton taxonomic and 
morphofunctional groups (MFG) in reservoirs 
located at the Cerrado biome. We tested the 
following hypotheses: (i) both local and spatial 
characteristics are essential factors structuring the 
phytoplankton communities for both taxonomic 
and MFG approaches, with the predominance of 
local predictors; (ii) the spatial predictors is more 
important during the dry season than during the 
rainy season. The lack of active dispersal capacity 
of phytoplanktonic organisms and the need for 
vectors for their transport (water current, animal 
hair/feathers, and wind) between the patches 
of habitats cause limitations in the movement 
of these organisms, especially in the dry season, 
characterized by reduced connectivity between the 
reservoirs, which can increase the influence of the 
spatial predictor (Bortolini et al., 2017; Bie et al., 
2012; Heino et al., 2015).

2. Material and Methods

2.1. Study area

The Rio Preto basin is part of the Brazilian 
Cerrado biome in Minas Gerais (MG), Goiás (GO), 
and Distrito Federal (DF) states (Figure 1). It has an 

1. Introduction

Among several aquatic systems, reservoirs play 
an essential role in conservation and biodiversity 
maintenance (Céréghino  et  al., 2014), as these 
ecosystems compose about 30% of the surface 
of water bodies (Downing  et  al., 2006) and 
contribute considerably to the biodiversity of 
landscapes (Williams et al., 2004). Also, reservoirs 
provide environmental services that assist water 
resource management, such as sediment retention 
and reduced nutrient loads in the watershed 
(Céréghino et al., 2014; Yasarer et al., 2018).

However, the functioning and maintenance 
of these ecosystems depend on complex relations 
between several components, such as resources, 
abiotic conditions, community composition, and 
trophic interactions. Among these components, 
biological diversity is fundamental because it 
affects ecosystem processes and stability (Thébault 
& Loreau, 2005). In addition, species that present 
redundancy in their ecological functions increase 
the stability of ecosystems (Walker, 1992). Thus, 
it is important to use functional approaches in 
studies that aim to understand the functioning of 
ecosystems (Salmaso et al., 2015).

One of the main primary producers of aquatic 
ecosystems is the phytoplankton community 
(Reynolds, 2006). This photoautotrophic group is 
hugely diverse and has a wide range of functional 
characteristics [e.g., sizes, shapes, toxin production, 
and productivity rate; (Kruk  et  al. (2010)]. The 
dynamics of this community are structured 
by several factors, such as local environmental 
conditions (e.g., light, nutrients, temperature) 
and biological interactions (e.g., competition 
and predation) (Machado et al., 2016; Wu et al., 
2018). Furthermore, recent studies have found 
that spatial factors related to dispersal processes 
are crucial for determining the composition of this 
community (Bortolini et al., 2017; Oliveira et al., 
2020). The spatial structure of communities 
is affected by the high dispersal capacity of 
phytoplanktonic organisms, which occurs mainly 
passively (Naselli-Flores  et  al., 2016). Moreover, 
regional factors greatly affect the spatial structure 
of aquatic communities, such as connectivity and 
land use (Devercelli  et  al., 2016; Izaguirre  et  al., 
2016). Phytoplanktonic organisms developed 
several adaptations to overcome the barriers that 
terrestrial environments present, such as mucilage 
production, increased cell walls, spores, akinetes, 
and cyst formation (Ribeiro et al., 2011).
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area of 10,200 km2 and is part of the São Francisco 
River basin. The climate in the region is classified 
as Aw based on the Köppen classification, where 
rainfall ranges from 1,600 to 1,900 mm. year-1 
and the annual mean temperature ranges between 
19 to 20 ºC. It has two well-defined seasons, one 
of drought, which occurs from April to September, 
and another of rain, which runs from October to 
March (Alvares et al., 2013). The land use in this 
basin consists of highly mechanized agriculture 
using medium to large areas of central pivots 
(Borges et al., 2007). For this reason, most of the 
water is destined for irrigation, which comes from 
reservoirs (Carneiro  et  al., 2007). We collected 
samples from 40 reservoirs in the rainy season 
(February 2018) and from 37 reservoirs in the dry 
season (September 2018). We sampled the same 
reservoirs; however, three reservoirs were dry during 
the dry season and could not be sampled.

2.2. Phytoplankton community

We collected 100 mL of water at the subsurface 
(ca. 50 cm) in the central point of each reservoir 
to quantify phytoplankton and we stored it in 
dark amber flasks. Subsequently, we fixed the 
phytoplankton with Lugol solution. We estimated 
phytoplankton density using a Zeiss inverted 
microscope with 400× magnification following 
Utermöhl (1958). We identified the organisms 
to the lowest possible taxonomic level and the 
density was expressed in individuals per milliliter 
(ind.mL-1) (Bicudo & Menezes, 2006; Komarek 
& Anagnostidis, 1983; Komarek & Fott, 1983). 
Then, we classified the species found according to 
their morphofunctional groups (MFG), based on 
the classifications by Salmaso & Padisák (2007).

2.3. Local predictors

We measured water temperature (ºC), turbidity 
(NTU), pH, dissolved oxygen (DO; mg.L-1), 
electrical conductivity (mS.cm-1), oxi-reduction 
potential (ORP; mV), and total dissolved solids 
(TDS; g.L-1) using the Horiba multiparameter 
probe (Model U-50) in locu. We collected 500 mL 
of water from the subsurface (ca. 50 cm). We stored 
it on ice until we performed the gas chromatography 
method (APHA, 2015) to determine cations and 
anions (nitrite, nitrate, phosphate, ammonia, 
magnesium, fluoride, chloride, bromide, sulfate, 
sodium, potassium, and calcium). Total phosphorus 
(TP) and total nitrogen (TN) were also determined 
by the ascorbic acid method (APHA, 2015) and by 
total organic carbon (TOC) by combustion method 
(APHA, 2015), respectively, but only during the dry 
season since we did not have access to the equipment 
at the date of the rainy season.

2.4. Landscape predictors

We used the Digital Elevation Model (DEM) 
from Advanced Land Observing Satellite (ALOS), 
Phased Array L-band Synthetic Radar (PALSAR), 
from the Alaska Satellite Facility (ASF) electronic 
page: https://asf.alaska.edu/. The data were 
Radiometric Terrain Corrected (RTC) high 
resolution, 12.5 meters spatial resolution DEM. 
This DEM generated catchment areas of each 
sample unit that were considered the exutory of 
each sub-basin (catchment areas), following the 
theoretical approach of analyzing the riverscapes 
(Allan, 2004; Morley & Karr, 2002). We used the 
Terrain Analysis Using Digital Elevation Models 
(TauDEM) available on hydrology.usu.edu/taudem/
taudem5 in ArcMap® to fill sinks, generate the flow 
direction, flow accumulation, stream definition 
(>0.001 km2), and catchment area (sub-basin).

After generating the catchment areas, we 
obtained the land cover and use (forest formation, 
savanna, grassland formation, agriculture, and 
urban occupation). We downloaded the data from 
the Mapbiomas Project (https://mapbiomas.org), 
a multi-institutional initiative to generate the 
annual land cover and use maps using automatic 
classification processes applied to satellite images. 
We generated the area, in percent, for each sub-basin 
(catchment area) from the 2017 data available in 
Mapbiomas. We gathered the morphometric data 
from Google Earth images calculating the area and 
then the perimeter and margin development index 
(MDI) for each water reservoir (Håkanson, 1981).

Figure 1. Locations of water reservoirs in the Rio Preto 
River Basin. Minas Gerais (MG), Goiás (GO), and 
Distrito Federal (DF) states.
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2.5. Spatial predictors

We obtained the spatial variables by converting 
the latitude and longitude geographic coordinates 
to the Cartesian plane through the geoXY function 
of the SoDA package (Chambers, 2014) in the R 
environment (R Core Team, 2022). Subsequently, 
for independent ordering on orthogonal axes, we 
generated distance-based Moran Eigenvector Maps 
(dbMEM) (Legendre & Legendre, 2012). We 
performed this analysis using the dbmem function 
in the adespatial package (Dray et al., 2022). Then, 
we used the same forward selection steps described 
below.

2.6. Statistical analysis

To prevent rare species from significantly 
influencing the analyses, we standardized the species 
abundance matrix following the Hellinger method, 
using the standardize function in the vegan package 
(Oksanen et al., 2013). All statistical analyses were 
performed in the R environment (R Core Team, 
2022).

We measured the collinearity between the 
variables within the local predictors’ matrix for 
parsimony and reduction of the number of local 
predictors. We assessed this linear dependence with 
the Variance Inflation Factors (VIF), removing 
variables with VIF values greater than 10. After this, 
we selected the variables based on the knowledge 
about phytoplankton community ecology and 
using the forward selection procedure with two 
stopping criteria (Borcard et al., 2018). First, we 
performed a redundancy analysis (RDA), and if 
the test was significant, it was possible to perform 
the forward selection. Subsequently, to reduce the 
risk of adding too many variables, the p-value was 
used as the first stopping criterion, followed by 
the adjusted R2 (Blanchet et al., 2008). Thus, we 
included only variables that presented p values ≤ 
0.05 and adjusted R2 lower than that of the global 
model. We performed this analysis using the rda and 
forward.selection functions in the adespatial package 
(Dray et al., 2022).

After screening for collinearity and based on 
the forward selection analysis and our knowledge 
about phytoplankton ecology, we selected seven 
local predictors for the taxonomic classification 
and eight for the morphofunctional groups in the 
rainy season. On the other hand, in the dry season, 
six local predictors were selected for the taxonomic 
classification and seven for the morphofunctional 
groups. Regarding spatial predictors, for the rainy 
season, we selected four Moran eigenvector maps 

for the taxonomic classification. However, for the 
dry season and MFG the spatial predictor was 
not significantly related to the phytoplankton 
community.

To analyze the amount of variance explained by 
(a) local variables, (b) spatial variables or (c) the set 
of all variables, we performed a variance partitioning 
using partial Redundancy Analysis (pRDA) for the 
taxonomic classification and the functional groups. 
We performed these analyses with the rda function 
in the vegan package.

Then, to complement information from the 
pRDA analysis, we carried out a Multiple Regression 
Tree (MRT) to categorize the relationships between 
species, MFGs, and environmental characteristics. 
Thus, groups of sample units were defined by limit 
values of explanatory variables (De’ath, 2002). 
Subsequently, we combined this model with the 
Indicator Species analysis (IndVal) to select the 
species that most contributed to the explained 
variance of each group (Borcard et al., 2018). We 
performed these analyses using the mvpart function 
in the mvpart package (De’ath, 2014), and we 
identified the discriminant species by the summary 
function of the package mvpartwrap (Ouellette & 
Legendre, 2012).

3. Results

3.1. Taxonomic classification

In the rainy season, we found 169,363.52 
individuals (ind.mL-1), mainly from the classes 
Chlorophyceae (24.4%), Dinophyceae (16.1%), 
and Zygnematophyceae (14.2%). On the other 
hand, in the dry season, we found 222,793.78 
individuals (ind.mL -1), and the most abundant 
classes were Cyanobacteria (26%), Chlorophyceae 
(23%), and Zygnematophyceae (21.6%). We 
identified 328 taxa in the rainy season and 269 taxa 
in the dry season. However, no differences were 
detected on individuals’ density and taxa richness 
between the studied seasons (t-test = -1.28, p = 0.20; 
t-test = 0.45, p = 0.65 for mean taxonomic density 
and richness, respectively).

During the rainy season, we tested three 
predictors (local, spatial, and landscape) for the 
global model, and only the local (p = 0.001) and 
spatial (p = 0.001) predictors could significantly 
explain the variation in the phytoplankton 
community. For this reason, we performed the 
variance partitioning between local and spatial 
predictors, in which none of the partitions explained 
the phytoplankton community variance (Table 1).
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The global models for local (p = 0.001) and 
landscape (p = 0.015) predictors significantly 
explained the phytoplankton community in the dry 
season. However, the community was not spatially 
structured (p = 0.329). Regarding to variance 
partitioning, only the landscape predictor explained 
the phytoplankton community variation (Table 2).

The MRT analysis of the rainy season explained 
15% of the phytoplankton variation (Figure 2). The 
model separated the reservoirs into four groups; the 
first separation factor was the margin development 
index (MDI), whose node explained 5% of the 
split. The species Peridinium volzii Lemmermann 
was related to values below 1.4. The second node 
divided the communities with MDI above 1.4 
followed by turbidity below and above 5.2 NTU, 
explaining 5% of this split. Six taxa (Ankistrodesmus 
falcatus Ralfs, Hariotina reticulata P.A.Dangeard, 
Monoraphidium kormakovae Nygaard, Kirchneriella 
lunaris Möbius, Euglena polymorpha Dangeard, and 
Mucidosphaerium pulchellum C.Bock, Proschold 
& Krienitz) were related to turbidity values higher 
or equal than 5.2 NTU. Finally, the last node 
divided the reservoirs with turbidity below 5.2 
NTU according to the dam area, below and above 
0.6 ha. This node explained 5% of this split. Four 
taxa were related to values above or equal to 0.6 
ha (Cryptomonas ovata Ehrenberg, Cryptomonas 
marssonii Skuja, Parvodinium umbonatum Carty, 
and Edaphochlamys debaryana Pröschold & 
Darienko), and three taxa were related to values 
below 0.6 ha (Euglena gracilis Klebs, Closterium 
setaceum Ralfs and Nitzschia sp.).

In the dry season, the MRT model explained 
17% of the phytoplankton community variation 
(Figure 3), and four groups were formed. The first 
discontinuity divided the reservoirs into two groups 

Table 2. Variance partitioning of biologic matrix explained by local and landscape predictors in the dry season. Values 
in bold are statistically significant: p ≤0.05.

Predictors R2 Adjusted p
Local (Conductivity, pH, total nitrogen, total phosphorus and nitrite) 0.068 0.172

Landscape (forest, savanna, grassland, agriculture, and urban occupation) 0.015 0.045
Local*Landscape 0.022

Residual 0.890

Table 1. Variance partitioning of the biologic matrix explained by local and spatial predictors in the rainy season. 
MEM = Moran eigenvector map.

Predictors R2 Adjusted p
Local (pH, temperature, magnesium, nitrate, nitrite, phosphate, ammonia) 0.062 0.299

Spatial (MEM1, MEM4, MEM6, MEM7) 0.046 0.171
Local*Spatial 0.007

Residual 0.880

Figure 2. MRT analysis of the interaction between species 
density and local predictors of the 40 reservoirs sampled 
during the rainy season (R2 = 0.15). n is the number of 
sample units; the number on the left is the sum of the 
squares of the errors in each group. The species presented 
in each group are the most important for the explanation 
of each group. MDI = margin development index. The 
turbidity unity of measurement is NTU. Error = 0.8, CV 
Error = 1.2, SE = 0.04. Data used from Silva et al. (2022).

according to pH (below or above 5.4, explaining 
5.7% of the split. The species Peridinium volzii 
was associated with pH below 5.4. The second 
factor that divided the reservoirs with pH above 
or equal to 5.4 was conductivity (below or above 
0.07 mS.cm-1), explaining 4.9% of the split. Only 
the species Tetradesmus lagerheimii M.J. Wynne & 
Guiry was related with reservoirs with conductivity 
above or equal to 0.07 mS.cm-1. Finally, pH 
explained 5.7% of the last split, separating the 
reservoirs with conductivity below 0.07 mS.cm-1 
into groups with pH below or above 6.9. The species 
Pseudanabaena limnetica Komárek, Monoraphidium 
contortum Komárková-Legnerová, Mucidosphaerium 
pulchellum, Scenedesmus sp. 1, and Trachelomonas 
hispida F. Stein were associated with reservoirs with 
pH above or equal to 6.9.
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3.2. Morphofunctional groups

We found 25 MFG groups in the rainy season. 
The 2b group was dominant, with 16% of all 
density, followed by 9a with 10.5%. The dry season 
presented 24 MFG groups, and the dominant 
groups were 5a and 9a with densities contributions 
of 23.1% and 18.8%, respectively. However, there 
was no difference in the average morphofunctional 
densities between the rainy and dry seasons 
(t-test = 1.27, p = 0.20).

The global models for the spatial and landscape 
predictors were not significant and only the local 
predictors significantly explained the phytoplankton 
community in the rainy (R2 = 0.15 p = 0.001) and 
dry (R2 = 0.065 p = 0.018) seasons. For this reason, 
we did not perform the variance partitioning.

The MRT models using the MFG explained 
more of the phytoplankton community variance 
than the taxonomic classification. In the rainy 
season (Figure 4), the area of the reservoirs explained 
8% of the first split and separated the reservoirs into 
two groups, with sizes below and above or equal 0.3 
ha. Only the MFG 5a was associated with reservoirs 
small than 0.3 ha. The second factor that separated 
the group with an area above or equal 0.3 ha was 
area again, but now it divided samples between 
reservoirs bellow and above 7 ha, explaining 8% 
of this split. The MFGs 5d and 5c were associated 
with the four biggest reservoirs. The group with area 
below 7 ha was then divided by turbidity values 
above and below 11.3 NTU. This variable explained 

6% of this split. Two MFG groups (2c and 1c) were 
related to reservoirs with higher turbidity, whereas 
the MFG 2b was associated with reservoirs with 
lower turbidity.

The MRT model for the dry season explained 
24% (Figure 5), and pH was the first factor that 
separated the data into two groups, below and above 
6.8. This variable explained 9% of this split, and the 
MFGs 5d and 5c were associated with values above 
or equal to 6.8. Secondly, DO explained 8% and 
divided the reservoirs with pH below 6.8 into two 
groups with DO values below and above 8.5 mg.L-1. 
The MFGs 2c and 1c were associated with higher 
DO values. Lastly, pH was again responsible for the 
split, now dividing the reservoirs with DO values 
above 8.5 mg.L-1 into pH values below and above 
5.4. Now, this factor explained 7% of this split. 
Regarding the indicator MFG groups, the 2b group 
was related to higher pH values, and the 5a group 
was related to reservoirs with more acidic waters.

4. Discussion

We found that local predictors were not 
important for the phytoplankton community in any 
season, but in the rainy season we had indications 
that environmental and spatial relationships might 
be structuring the phytoplankton community. 
For the dry season, we found a greater influence 
of landscape on phytoplankton. Regarding 

Figure 3. MRT analysis of the interaction between 
species density and local predictors of the 37 water 
reservoirs sampled during the dry season (R2 = 0.17). n 
is the number of sample units; the number on the left is 
the sum of the squares of the errors in each group. The 
species presented in each group are the most important 
for the explanation of each group. The measurement unit 
of conductivity is mS.cm-1. Error = 0.8 CV Error = 1.2 
SE = 0.05. Data used from Silva et al. (2022).

Figure 4. MRT model based on morphofunctional 
groups (MFG) densities and local predictors of the 40 
reservoirs in the rainy season (R2 = 0.22). n is the number 
of sample units; the number on the left is the sum of the 
squares of the errors in each group. Each MFG group 
shown contributed most to the explanation of each group. 
The measurement unit of turbidity is NTU. Error = 0.7, 
CV Error = 1.2, SE = 0.09. Data used from Silva et al. 
(2022).
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functional groups, only local predictors structured 
them. Finally, we also detected changes in the 
environmental variables that structure the reservoirs 
according to the seasons.

In the rainy season, we found no evidence that 
the spatial or local predictors individually influenced 
the phytoplankton community. However, the 
fraction that represents the shared variation 
of local and spatial predictors could not be 
tested. This may indicate that spatially structured 
environmental factors were controlling the 
phytoplankton community. The rainy season was 
related to nitrate, phosphate, temperature, pH, 
magnesium, and ammonia. Since agricultural 
landscapes predominate our study area, we suggest 
that those nutrients that are usually found in 
agricultural fertilizers would have been carried out 
to reservoirs by surface runoff (Silva et al., 2011). 
Furthermore, the water temperature can also 
increase due to runoff draining from impermeable 
surfaces of agricultural areas (Doubek et al., 2015). 
In this way, the dynamic of environmental factors 
with agricultural landscapes could explain their 
relationship with the rainy season in our study area.

Even though the MDI, turbidity, and reservoir 
area were not the most important variables affecting 
communities’ structure, they were important for 
grouping the reservoirs during the rainy season. 
The MDI and reservoir area tend to be higher in 
the rainy season than in the dry season, which can 

produce more heterogeneous microhabitats and 
larger species pools (Smith  et  al., 2005; Tundisi 
& Matsumura, 2011). Furthermore, in the rainy 
season, high turbidity values are usually related 
to the sediment inflow from the surface runoff 
(Girardi et al., 2016; Reynolds, 2006), and some 
colonial chlorophyte species found in our study, 
such as Mucidosphaerium pulchellum, and Hariotina 
reticulata, are tolerant to low light environments 
(Reynolds et al., 2002), which explains the ability 
of these species to indicate high turbidity reservoirs.

In the dry season, the phytoplankton community 
was structured primarily by landscape predictors, 
mainly agricultural landscapes. Those landscapes 
are mainly associated with increases in nutrients 
and temperature in reservoirs (Silva et al., 2011). 
In addition, cyanobacteria were the most abundant 
class in the dry season. These organisms are 
normally found in agricultural landscapes and 
also in nitrogen-limited reservoirs (Doubek et al., 
2015). This effect occurs mainly in the dry season 
when the N:P ratio is reduced (Hayes et al., 2015). 
The main variables selected for the dry season were 
conductivity, pH, nitrite, TN, and TP. Nutrients 
such as phosphorus and nitrogen had lower values 
in the dry season than in the rainy season, probably 
due to reduced elements of allochthonous origin 
(Silva  et  al., 2011). On the other hand, higher 
values of conductivity are common during the dry 
season because of the concentration of ions caused 
by the smaller amount of water in the reservoirs 
(Devercelli et al., 2016).

Conductivity and pH were crucial in generating 
groups in the reservoirs during the dry season; in 
general, the conductivity values were low in all 
reservoirs except those with predominant urban 
land use. This phenomenon was similar to pH, 
where urban reservoirs had pH close to 7, and the 
other reservoirs had values around 6. Four species 
of Chlorophyceae were identified as indicators 
of more neutral waters, and this class is generally 
associated with organisms without specialized traits 
and tolerance to pH variations (Chakraborty et al., 
2011; Kruk et al., 2010).

Our first hypothesis that local predictors would 
be more important in explaining the variation 
in the phytoplankton structure but that spatial 
predictors would be more significant in the dry 
season was partially supported, as local predictors 
were only significant for MFG data. This greater 
predictive ability of local predictors over functional 
groups is expected because the functional attributes 
of organisms are directly linked to their ability 

Figure 5. MRT model based on morphofunctional group 
densities and local predictors of the 37 reservoirs in the 
dry season (R2 = 0.24). n is the number of sample units; 
the number on the left is the sum of the squares of the 
errors in each group. Each MFG shown contributed the 
most to the explanation of each group. DO = dissolved 
oxygen. Error = 0.7, CV Error = 1.2, SE = 0.09. Data 
used from Silva et al. (2022).
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to acquire resources, trophic interactions and 
their niche (Litchman  et  al., 2012; Litchman & 
Klausmeier, 2008). We can also observe that the 
environmental variables were similar between the 
functional groups and the taxonomic data at both 
seasons. Our results showed a complementarity of 
functional groups and taxonomic data, reinforcing 
that functional approaches are a fundamental strategy 
for understanding the responses of phytoplankton to 
environmental changes and also for biomonitoring 
purposes (Litchman & Klausmeier, 2008; Reynolds, 
2006; Kruk et al., 2010).

At last, our results evidenced metacommunities 
dynamics where, during the rainy season, spatially 
structured environmental predictors could affect the 
phytoplankton community due to the proximity 
and greater connectivity of the reservoirs, resulting 
in a larger influence of the space in the local 
predictors (Heino et al., 2015; Rocha et al., 2020). 
On the other hand, landscape was more influential 
in the dry season, mainly agricultural land uses. 
This predictor is usually related to environmental 
conditions such as water temperature and nutrients 
and this association could be structuring the 
phytoplankton community in the dry season. In 
this sense, we showed that, for both seasons, the 
local predictors had some influence. However, for 
the rainy season, the spatial predictor was more 
important, while for the dry season it was the 
landscape predictor.

5. Conclusion

We demonstrated a complex relationship 
between the phytoplankton community and the 
local, spatial, and landscape predictors. While 
the local predictors had a small contribution to 
phytoplankton structure in both seasons, the 
spatial and landscape predictors were important in 
the rainy season and dry seasons, respectively. We 
also revealed that nutrients such as nitrogen and 
phosphorus were important in both seasons. The 
importance of other environmental characteristics 
changed between the seasons.

Finally, the MFGs are a crucial complementary 
tool to understand the dynamics of phytoplankton 
metacommunities in reservoirs. We suggest the use 
of these groups in studies that aim to unravel the 
complex relations of this community with its local 
predictors.
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