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Abstract: Aim: The Kallada River is exposed to several kinds of pollution from domestic, civic, recreational, 
and agricultural activities and human settlements. The objectives of the study were to assess sediment quality, 
especially the trace metal concentration and to compare with the previous reports on the sources of pollutants 
in the Kallada River. Methods: A total of 12 sediment variables including the following metals: iron (Fe), 
manganese (Mn), chromium (Cr), and zinc (Zn) were analyzed. Atomic Absorption Spectrophotometer 
(AAS) was used to detect trace metal concentration in the sediment samples. Statistical tools such as Pearson’s 
correlation, Principal component analysis (PCA), and Cluster analysis (CA) were employed to analyze the 
data and source of pollutants. Results: This investigation indicated that Fe was the most accumulated element 
in the sediments, and the midstream (K6 and K10) and downstream sites (K11 to K15) showed a much higher 
concentration level than the upstream sites. The concentrations of trace metals in sediment samples followed 
the order Fe> Mn> Cu>Zn. Conclusions: The present study concluded that major sources of pollutants were 
sewage and civic effluents and agricultural discharges. These may cause a severe threat to the Kallada River 
and health risk to the local populations, which rely on the river, primarily for drinking purposes. Hence, 
appropriate conservation policies to reduce pollution are therefore essential.
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Resumo: Objetivo: O Rio Kallada está exposto a vários tipos de poluição decorrentes de atividades domésticas, 
cívicas, recreativas, agrícolas e assentamentos humanos. Os objetivos do estudo foram avaliar a qualidade do 
sedimento, especialmente a concentração de metais traços, e comparar com relatórios anteriores sobre as fontes 
de poluentes no Rio Kallada, India. Métodos: Um total de 12 descritores de sedimento, incluindo os seguintes 
metais: ferro (Fe), manganês (Mn), cromo (Cr) e zinco (Zn), foram analisados. Um espectrofotômetro de absorção 
atômica foi usado para detectar a concentração de metais traços nas amostras de sedimento. Correlação de Pearson, 
análise de componentes principais (PCA) e análise de agrupamento (CA) foram usadas para analisar os dados e 
fontes de poluentes. Resultados: Esta pesquisa indicou que o Fe foi o elemento mais acumulado nos sedimentos, 
e os locais de meio do rio (K6 e K10) e jusante (K11 a K15) mostraram um nível de concentração muito mais alto 
do que os locais a montante. As concentrações de metais traços nas amostras de sedimento seguiram a ordem 
Fe > Mn > Cu > Zn. Conclusões: O presente estudo concluiu que as principais fontes de poluentes foram esgotos, 
efluentes domésticos e descargas agrícolas. Estes podem representar uma ameaça severa ao Rio Kallada e 
riscos à saúde das populações locais, que dependem principalmente do rio para fins de consumo de água. 
Portanto, políticas de conservação apropriadas para reduzir a poluição são essenciais.

Palavras-chave: qualidade do sedimento; metais traço; rio Kallada; atividades antropogênicas; 
estuário Ashtamudi.
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The sediment pollution is also an alarming 
environmental condition on riverine ecosystems 
in India (Mukhopadhyay et al., 2020). Recent 
reports in India recognized sediment as the most 
common pollutant in rivers, streams, and estuaries 
(Khuman et al., 2020; Dhamodharan et al., 2019). 
Similarly, heavy metals are an important group of 
contaminants in the riverine habitats that affect the 
transport and storage of various constituents present 
in the sediment (Kumar et al., 2022). According 
to, Iordache et al. (2022), trace metals are toxic 
and these metals could remain and accumulate 
in the bottom sediments without deteriorating in 
riverine environments. The multiple anthropogenic 
stresses on aquatic systems such as agriculture, 
sewage discharge and industrialization significantly 
contribute to the increased levels of metals in sediments 
(Bashir et al., 2020). Trace metal analysis allows the 
detection of pollutants and its spatial and temporal 
distribution reveals the pollution status of an ecosystem 
(Herath et al., 2022). In the case of Kallada River, the 
World Bank aided and the second biggest irrigation 
project in Kerala ‘The Kallada Irrigation Project’ 
(KIP) is centered on this river and currently this 
scheme is benefited 92 villages (Adarsh et al., 2018). 
Regrettably, recent reports revealed the effects of 
various anthropogenic activities such as sand mining, 
sewage and civic effluents, are weakening the ecological 
health of Kallada River. Moreover, recent reports also 
revealed the trace metal contamination in Kallada 
River (Mohan & Krishnakumar, 2022).

We are privileged enough to get access to this 
riverine ecosystem for conducting two-year research. 
The Kallada River is largely influenced by the southwest 
monsoon (Sreelash et al., 2018); therefore, evaluating 
the temporal variations should be an imperative to 
reveal the significant factors controlling the ecological 
integrity of Kallada River. A seasonal investigation 
of trace metal concentration over a spatial scale is 
appropriate to assess the contamination due to various 
anthropogenic activities. Also, the influence of seasonal 
trends on trace metal concentration was assessed. 
As mentioned earlier, sediment quality influences 
both biotic and abiotic components and they serve as 
important markers for assessing trace metal pollution. 
In this perspective, the current effort is significant in 
a freshwater ecosystem like Kallada River. Hence, we 
regarded it imperative to assess the sediment quality. 
The main objectives of the present investigation are to 
(i) assess the spatio-temporal variations in sediment 
variables using multivariate statistical tools (ii) discuss 
the source of various trace metals (iii) recommend 
appropriate conservation policies.

1. Introduction

Rivers serve as the essential pathways for the 
distribution of aquatic and terrestrial constituents 
such as sediments, nutrients, and effluents to 
downriver (Zhang et al., 2021; Leibowitz et al., 2018). 
Sediments are a concern in riverine ecosystems due 
to their interdependence with a wide range of 
ecological aspects. Riverine sediments perform a 
significant role in the hydrological cycle and reveal 
the pollution status of the river. In many freshwater 
systems, pollutant load, including heavy metals leads 
to increased sediment concentrations that have the 
ability to destruct aquatic life (Ebadi & Hisoriev, 
2018; Gaur et al., 2005). Physicochemical analysis 
of water summarizes the effect of pollutants at the 
time of sampling though the bottom sediments 
characterization provides a collective evaluation of 
pollution. The recent reports disclosed that sediment 
contamination is also a leading cause of deterioration 
occurred in rivers (Achi et al., 2021). Deterioration 
of the aquatic ecosystems by toxic metals is a global 
threat due to their harmfulness, imperishable nature, 
resilience, and deposition in several riverine habitats 
(Custodio et al., 2021; Kafilat Adebola et al., 
2018). Sediment quality assessments are valuable to 
recognize the capability of pollutants within sediment 
to instigate biotic effects and compare contaminant 
concentration in sediment with the quality standards.

The integrity of freshwater resources is greatly 
affected by rapid population growth, urbanization, 
urban runoff, and various wastewater effluents 
(Ustaoğlu & Tepe, 2019). The discharge of heavy 
metals from sediments into the river water under 
propitious conditions makes the riverine environment 
extremely susceptible to contamination (Müller et al., 
2020; Pandey et al., 2019). Sediments may serve as 
the sources of discharged contaminants in freshwater 
systems, which either attach to the layers of sediments 
or are dissolved in the surrounding water (Singh et al., 
2017). The sediment quality is a major aspect of water 
bodies, as it can impact the quality of both the water 
column and the benthic life (Chon et al., 2012). 
River sediment influences the habitat structures 
of various benthic organisms (Garcia et al., 2012). 
Variations in the sediment quantity and distribution 
pattern significantly affect the channel characteristics 
(Jia et al., 2022). Furthermore, the type of sediment 
in the water column reveals water transparency 
(Baxa et al., 2021). In the case of perennial rivers, 
sediment transportation is manly contributed by 
water flow and upstream sediment supply. Alteration 
in sediment quality can have substantial effects on 
aquatic ecosystems (Bussi et al., 2021).
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2. Materials and Methods

2.1. Details of study area and sampling framework

The tropical perennial Kallada River originates 
from Karimalai-Kodakkal at an elevation of 1524 
m and debouches into the Ashtamudi estuary. 
The Kallada River is the most important water 
resource for agricultural needs in the Quilon district 
(Jennerjahn et al., 2008). Geographically, the Kallada 
River has classified into precambrian crystalline, 
tertiary and laterite quaternary sediments. National 
Bureau of Soil Survey (NBSS, 2006), reported 
that the Kallada river basin includes 17 major 
soil series. The land use pattern along the Kallada 
River is mainly consist of plantation, barren land, 
forest, agriculture and urbanized parts (Aju et al., 
2019). A total of fifteen sampling stations were 
selected within a stretch of 121 km (Figure 1). 
Based on altitude, these stations were categorized 
into, upstream, midstream and downstream. The 
upstream consists of the most undisturbed part of 
Kallada River. However, midstream and downstream 
stations facing manyfold anthropogenic stresses such 
as sand mining, urbanization, bridge construction, 
tourism, water transport, and wastewater discharge. 
The sampling sites were selected based on diversifying 
of habitat types and accessibility. The GPS tracker 
application (GPS - Virtual Maze) was employed 
to fix the geographic coordinates. Characteristics 
of the sampling stations are shown in Table 1. 
Sampling was done bi-monthly from February 
2019 to January 2021 for two years. The study 
periods were categorized, into three different seasons 
as pre-monsoon (PrM), monsoon (MoN), and 
post-monsoon (PoM) for sediment analysis.

2.2. Analysis of sediment samples

For the sediment quality analysis, 12 parameters 
were studied, including pH, organic carbon (OC), 
phosphate (PO4

3-), sulphate (SO4
2-), boron (B), 

potassium (K+), calcium (Ca2+), and magnesium 
(Mg2+), and trace metals such as zinc (Zn), iron 
(Fe), copper (Cu), and manganese (Mn). Sediment 
samples were collected using a Van Veen grab of 
0.04 m2 (van Veen, 1933). This manually controlling 
grab sampler is a clam shell-type scoop instrument 
connected with a rope or cable. The hook holds 
the sampler mouth to an open position and once 
the sampler collects the sediment at the bottom of 
the river, it gets pulled back to a closed position. 

Figure 1. Location of sampling sites in Kallada River, India (Direction of river flow is east to west).

Table 1. Sampling stations names, site codes and GPS 
coordinates of the sampling stations.

Sampling station Site code GPS Coordinates

Thenmala K1 8.957740 N, 77.065018 E

Urukunnu K2 8.986332 N, 77.022788 E

Ottakkal K3 8.971937 N, 77.044585 E

Ayiranelloor K4 8.986937 N, 76.99278 E

Edamon K5 8.002679 N, 76.981768 E

Punalur K6 9.019580 N, 76.922699 E

Kamukumcherry K7 9.017823 N, 76.925923 E

Pidavoor K8 9.075653 N, 76.856850 E

Pattazhy K9 9.080699 N, 76.797195 E

Enathu K10 9.091344 N, 76.755375 E

Kadapuzha K11 9.012168 N, 76.632633 E

West Kallada K12 9.013375 N, 76.596572 E

Munroe Island K13 8.999644 N, 76.627733 E

Arinalloor K14 9.023025 N, 76.648671 E

Koivila K15 8.996483 N, 76.578357 E
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The samples were kept in clean plastic bags and 
brought to Zoology Research Centre, Pathanapuram 
for further laboratory analysis.

For trace metal analysis, KEL PLUS digestion 
unit (KES 04L) was employed for the digestion of 
dry sediment samples. The digested samples were 
analyzed for trace metals in Atomic Absorption 
Spectrophotometer (AAS) (Perkin Elmer AA 800). 
Analysis of sediment variables were done by using 
the standard protocol (Jackson, 1967).

2.3. Data analysis

Pearson correlation (r) was used to determine the 
way and amount of association between sediment 
variables. One-way analysis of variance (ANOVA) 
was done by using the Microsoft Excel Spreadsheet 
function and the probability (p) values <0.05 were 
obtained to elucidate the significant variance. 
The principal component analysis (PCA) was 
applied for the analysis of sediment variables with 
the purpose to expose the sources of pollutants 
(Jolliffe & Cadima, 2016; Reid & Spencer, 2009). 
Both PCA and correlation were done by using 
XLSTAT version 2021.4 (Melki et al., 2018). 
Additionally, cluster analysis was also employed 
to decrease the dimensionality of the dataset, and 
squared Euclidean distance measures the distance 
between the clusters. Cluster analysis was performed 
by using the statistical software PAST, version 4.03 
(Hammer & Harper, 2001).

3. Results and Discussion

3.1. Sediment variables and heavy metal status

Sediments of riverine systems are regarded as 
the destination for pollutants discharged from 

various sources in freshwater and offer a repository 
for detecting pollution status (Hasaballah et al., 
2019; El-Amier et al., 2015). The mean values 
of sediment variables were shown in Table 2. 
During the sediment quality analysis, the pH was 
in the range of 6.29-8.77. Sediment pH values at 
upstream were significantly different from those of 
downstream of the Kallada River. The K15 showed 
the maximum mean value (7.81 ± 0.43) while 
K6 showed minimum (6.78 ± 0.49) during PrM. 
Higher pH at K15 might be due to the influence 
of Ashtamudi estuary. The low pH might be due 
to the increased rate of decomposition of organic 
matter at K6 during PrM. The pH of the sediment is 
a significant variable that reveals the decomposition 
status of the benthic region (Catianis et al., 2018; 
Reeves & Liebig, 2016). Sediment pH values at 
upstream were significantly different from those 
downstream of the Kallada River (Table 3).

This specifies the fact that the effluent has 
significantly impacted the sediment pH. This 
suggests that the metal concentrations would 
probably be more noticeable in downstream 
than upstream. Similar findings were reported by 
Venkatramanan et al. (2015) from Tirumalairajan 
River, Tamil Nadu. In this investigation, organic 
carbon % ranged between 0.02 in K8 (MoN) 
and 1.68 in K6 (PoM). The higher percentage 
of organic carbon at K6 was due to the entry of 
organic waste either from the nearby town area 
or through some wastewater drains of the locality. 
Similar findings were reported by Sreelakshmi 
& Chinnamma (2018) from Bharathapuzha, 
Kerala. The water-holding ability, ion transfer, and 
microbial activities are controlled by the amount 
of organic carbon present in the sediments. 

Table 2. Statistical summaries of sediment variables analyzed in Kallada River during the study period.

Variables
PrM MoN PoM

Minimum Maximum Mean ± SD Minimum Maximum Mean ± SD Minimum Maximum Mean ± SD
pH 5.92 8.77 7.12 ± 0.89 6.29 7.96 7.32 ± 0.37 6.35 7.98 7.20 ± 0.57

OC (%) 0.05 0.55 0.21 ± 0.11 0.02 0.84 0.29 ± 0.27 0.24 1.68 0.61 ± 0.35
PO4

3− (ppm) 4.73 17.04 9.15 ± 3.90 1.79 8.11 4.39 ± 1.64 3.12 12.52 6.73 ± 2.72
K+ (ppm) 31.95 198.16 99.67 ± 57.26 21.15 89.07 42.22 ± 19.51 30.99 175.52 71.53 ± 44.31

Ca2+ (ppm) 106.81 680.21 297.18 ± 220.76 27.32 394.75 91.66 ± 83.51 66.25 659.26 253.78 ± 219.96
Mg2+ (ppm) 4.45 109.92 27.84 ± 14.25 2.45 67.11 16.45 ± 14.51 3.45 89.18 22.66 ± 20.41

B (ppm) 0.34 0.92 0.56 ± 0.14 0.16 0.49 0.29 ± 0.09 0.25 0.49 0.37 ± 0.08
S (ppm) 2.18 10.36 5.41 ± 2.61 0.52 5.17 2.43 ± 1.43 1.44 8.93 3.86 ± 2.23
Fe (ppm) 4.83 183.73 68.07 ± 44.15 0.43 89.55 26.01 ± 17.41 6.21 154.88 54.74 ± 53.86
Mn (ppm) 5.21 98.12 39.34 ± 31.12 0.51 51.69 20.87 ± 15.63 6.25 64.03 29.53 ± 20.82
Cu (ppm) 4.05 69.45 31.87 ± 23.22 0.21 32.49 14.67 ± 10.81 5.36 45.75 22.84 ± 15.32
Zn (ppm) 3.33 56.95 25.56 ± 16.74 0.21 17.32 10.28 ± 6.41 5.11 43.12 21.17 ± 11.81

PrM: Pre-monsoon; MoN: Monsoon; PoM: Post-monsoon; %: Percentage; ppm: Parts Per Million; B: Boron; 
Cu: Copper; Fe: Iron; Zn: Zinc; PO4

3−: Phosphate; K+: Potassium; Ca2+: Calcium; Mg2+: Magnesium; Mn: Manganese; 
S: Sulphate; OC: Organic carbon.
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However, the river sediments had relatively low organic 
carbon content, probably because of high precipitation 
of CaCO3 in downstream sites, land runoff, and 
effective mineralization of organic content due 
to the effective mixing of the overlying water 
(Hou et al., 2013).

The PO4
3− and K+ were in the range of 1.79-

16.50 ppm and 21.95-198.16 ppm respectively. 
The maximum value of PO4

3− at K10 were due to 
the dead organic matter settling from surface and 
are associated to the permeability of the sediment 
during the PoM and tends to increase towards 
the downstream parts. Similar outcome was 
documented by Lola Catherine & Mary Helen 
(2018) from the Manakudy estuary. Similarly, 
the maximum values of K+ were noticed during 
the PoM season. Concentration of K+ along the 
upstream stations might be due to the weathering 
processes. Contrarily, increasing tendency of 
K+ towards downstream may attributed to the 
contribution from agricultural lands. The trend of 
potassium distribution in this study corroborates to 
George & Joseph (2017) from Meenachil River. The 
distribution of Ca2+ oscillates around a minimum 
of 27.32 ppm in K4 (MoN) and a maximum of 
680.21 ppm in K15 (PrM). The higher calcium 
content at K15 was probably due to the large number 
of remains of shelled organisms. Similar findings 
were also documented by Sobha et al. (2009) from 
the aquatic systems of Thiruvananthapuram. The 
Mg2+ shows a similar trend as Ca2+ towards the 
downstream. The Mg2+ ranged between 3.45 and 
109.92 ppm. The highest Mg2+ value was recorded 
at K15 during PrM and the lowest at K1 during 
MoN. The influence of Ashtamudi estuary was also 
mirrored in the downstream in the case of Mg2+ 
during all the seasons. Similar trends were observed 

by Nair & Kumar (2019) at Vamanapuram River. 
In the case of boron, K6 (PrM) have comparatively 
high levels and lowest values were found at K1 
(MoN). Boron is a vital micronutrient for the 
survival of aquatic flora.

The major source of boron includes weathering of 
rocks, fertilizers, and pesticides, the burning of wood 
and coal (Copaja & Muñoz, 2018). However, boron 
may enter into rivers due to various anthropogenic 
inputs as suggested by Kadam et al. (2020). Sulphate 
shows maximum concentration at K13 and minimum 
at K1 during PrM and MoN seasons respectively. 
Sulphate concentrations ranged from 0.52 to 
10.36 ppm. The accumulation of sulphate in river 
water may be due to precipitation, groundwater, and 
weathering of minerals and anthropogenic sources 
including effluents, mining, petroleum refineries, 
and industries (Chakrapani & Veizer, 2006). In the 
present context, the higher sulphate could be due 
to the dissolution of minerals and the decaying of 
organic matter during the PoM season.

The highest concentrations of trace metals were 
observed during PrM followed by PoM and MoN 
seasons. The trace metal status (Fe and Mn) showed 
a maximum value at the K13 station, except for Cu 
and Zn for which maximum values were recorded 
at K6 station. The values of Cu ranged between 0.21 
to 68.15 ppm. The low values of Cu at the upstream 
sites revealed that there was no significant source 
of pollution. The maximum Cu concentration was 
found at K10 during PrM and the minimum at 
K1 during MoN. It may be attributed to sewage 
effluents and agricultural runoff (Hussain et al., 
2017). The major sources of Cu include plant 
and animal wastes, and a small portion may come 
from human excreta as documented by Dharan 
& William (2015) from Pamba River, Kerala. 

Table 3. Stream-wise ANOVA results of sediment variables analyzed in Kallada River during the study period.

Variables
Upstream Midstream Downstream

dF F p dF F p dF F p
pH 3 27.26 0.001 3 25.75 0.029 3 11.07 0.025

OC (%) 3 52.74 0.001 3 80.57 0.007 3 13.80 0.001
PO4

3− (ppm) 3 35.59 0.001 3 32.90 0.036 3 14.15 0.008
K+ (ppm) 3 22.49 0.001 3 16.75 0.016 3 13.38 0.001

Ca2+ (ppm) 3 17.04 0.001 3 13.74 0.002 3 17.46 0.001
Mg2+ (ppm) 3 63.58 0.001 3 36.94 0.001 3 12.60 0.033

B (ppm) 3 72.53 0.001 3 29.10 0.006 3 18.29 0.003
S (ppm) 3 81.43 0.001 3 12.73 0.016 3 10.24 0.008
Fe (ppm) 3 16.80 0.001 3 12.81 0.048 3 12.73 0.001
Mn (ppm) 3 56.19 0.001 3 10.00 0.003 3 45.59 0.001
Cu (ppm) 3 23.98 0.035 3 10.51 0.002 3 52.53 0.001
Zn (ppm) 3 74.72 0.002 3 16.42 0.001 3 20.98 0.066

%: Percentage; ppm: Parts Per Million; dF: Degree of freedom; F: - Significance test; p: – Significance.
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Zn is a crucial element for all organisms as well as 
for mankind. Zn concentration varies from 0.21 
to 56.95 ppm. Maximum zinc concentration 
was recorded during PrM at K6. Similar seasonal 
fluctuations were noticed by Asha & Joseph 
(2017) from the Periyar River. Results also indicate 
that high concentrations of Zn and Cu were also 
observed in downstream sites. Deposition of 
trace metals such as Cu and Zn may attributed 
to the diverse anthropic sources such as dredging, 
municipal effluents, and reclamation (Kumar et al., 
2020). The Fe is a dynamic constituent for life and it 
plays a crucial role in an array of metabolic processes 
including oxygen transport and DNA synthesis. 
Among the trace metals, the presence of iron in 
river sediments received great importance due to its 
substantial effects on the governance of other trace 
metal concentrations in freshwater ecosystems. In an 
aquatic environment, Fe plays a critical role in the 
geochemical cycling of several ions (Dhanakumar 
& Mohanraj, 2013). In the present investigation, 
Fe concentrations ranged from 0.43 to 183.73 ppm. 
The maximum value at K13 during PrM season 
might be due to the mixing of the sewage effluents. 
Similar to other trace metals, the Fe content also 
tends to increase towards the downstream stations. 
The concentration of Mn value was found between 
0.50 and 98.12 ppm. Maximum concentration of 
Mn was recorded during PrM over MoN and PoM 
seasons. The elevated Mn towards downstream 
(K6 to K15) was ascribed to the deposition of animal 
wastes, municipal wastes, and sewage discharges 
as revealed by Kashid et al. (2009) from Tarkarli 
River. The present results suggest that Fe, Cu, Mn, 
and Zn in the bottom sediment are associated with 
organic matter and transported into the river while 
attached to organic matter comes normally from 
natural sources.

3.2. Principal component analysis

The sources of the trace metals found in the 
bottom sediments in the Kallada River were 
investigated using PCA. The concentrations 
and sources of trace metals in the sediments of 
Kallada River was determined in order to propose 
develop measures to protect the river. The PCA 
results for the trace metal concentrations and 
other variables are shown in Figure 2. Results of 
the PCA specify that the variables can be batched 
into two principal components. Component 1 
(F1) is positively associated with the Fe, and Zn 
concentrations. Component 2 (F2) is associated with 
the Cu concentration. F1 and F2 explain 57.94% 

(eigenvalue: 6.95) and 17.89% (eigenvalue: 2.14) 
respectively, of the total variance and (Figure 2a). 
Mn has a high loading for both F1 and F2. It is 
seen that pH and organic carbon are significantly 
positively correlated with K+, Ca2+, Mg2+, S, 
and Fe and negatively correlated with boron. 
Similar results were reported from Yenshui 
River by Tsai et al. (2003). Similarly, phosphate 
is significantly correlated with, S, Fe, Mn, and 
Cu and negatively correlated with B, K+, Ca2+ 
and Mg2+. The results of the PCA indicate that 
organic carbon, PO4

3−, K+, Ca2+, Mg2+, S, Fe, and 
Zn predominantly came from the sources like 
sewage effluents. Cu and Mn came mainly from 
the agricultural and municipal effluents. Fe is 
significantly correlated with Zn and negatively with 
boron. Mn significantly correlated with Cu and Zn. 

Figure 2. (a) Contribution plot using PCA based on 
sediment quality variables. %: Percentage, F1: Component 1, 
F2: Component 2, B: Boron, Cu: Copper, Fe: Iron, Zn: 
Zinc, PO4

3−: Phosphate, K: Potassium, Ca: Calcium, 
Mg: Magnesium, Mn: Manganese, S: Sulphate, and 
OC: Organic carbon; (b) Grouping of stations in PCA 
analysis. K1 to K15 are the sampling sites.
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Cu negatively correlated with boron. The positive 
association among sediment variables markedly 
reveals their interrelationship, specific trait, and 
common source of pollution. According to the 
PCA results, pH, OC, K+, Ca2+, S, Fe, Cu, Mn, and 
Zn were determined to have strong relationships 
with only F1. The multivariate investigation reveals 
that Fe, Cu, Mn, and Zn in the river sediment are 
associated with various anthropogenic inputs and 
shifted into the bottom sediments as documented 
by Pandey & Singh (2017) from Ganga River. 
Moreover, different strong positive correlations 
were found between the concentrations of Fe, Cu, 
and Zn. Pearson’s correlation results (Figure 3) also 
support the contention that these trace metals have 
common sources.

3.3. Cluster analysis

During the cluster analysis, various sampling sites 
in the study area were classified into six major clusters 
based on the similarity in trace metal concentration 
(Figure 4). Application of hierarchical clustering in 
the sediment analysis of Indian rivers were previously 
documented by Khan et al. (2020) and Kumar et al. 
(2019) in various aquatic systems. In this scenario, 
one group included the three upstream stations 
(K1, K2 and K3) and the second cluster consisted 
of the remaining upstream stations K4 and K5. The 
third cluster consisted of two midstream stations 
(K7, K8 and K9). The aforementioned stations were 

found to be the most undisturbed part of the Kallada 
River during the study period. The midstream stations 
K6 and K10 were recognized as the fourth cluster. The 
downstream stations K11 and K12 formed the fifth 
cluster while the remaining downstream stations K13, 
K14 and K15 comprised the last cluster. Trace metal 
concentrations were comparatively higher in fourth 
and last clusters during the study period. Sewage and 
civic effluents were the serious issues in these stations. 
The PCA grouping of sampling stations (Figure 2b) 
also confirmed the findings of cluster analysis.

The outcome of this investigation shows that 
concentration of trace metals in river sediment is 
rising. Spatial and temporal distribution revealed 
different levels of pollution. A constantly mounting 
trend at the mid and downstream stations indicating 
perilous impacts of various sources including civic and 
sewage effluents. A number of wastewater channels at 
different points along the cities largely contributed 
to the trace metal concentration in river sediments. 
These drains should be monitored and wastewater to 
be properly treated. The upstream of Kallada River 
was found to be the most undisturbed part while the 
stations such as K6, K10, and K13 showed higher values. 
The multivariate statistical analysis also revealed 
the influence of sewage and agricultural inputs in 
controlling trace metal concentration. The study 
provides significant database for future research on 
Kallada River and for developing conservation and 
restoration measures for river basin management.

Figure 3. Plot depicting Pearson correlation coefficients between sediment variables (p<0.05 boxed values). 
p: Significance, B: Boron, Cu: Copper, Fe: Iron, Zn: Zinc, PO4

3−: Phosphate, K: Potassium, Ca: Calcium, 
Mg: Magnesium, Mn: Manganese, S: Sulphate, and OC: Organic carbon.
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