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Abstract: Aim: In this study, we used multiple statistical protocols to evaluate which nutrient content 
best explains senescent macrophyte and detritus decomposition of several macrophyte species in a lake 
of the Upper Paraná River floodplain; Methods: Senescent macrophytes of different life forms were left 
to decompose in litter bags. Macrophyte nutrient contents were quantified before and after incubation. 
Simple regressions, multiple regressions and Akaike information criterion were used to evaluate which 
nutrient best explained initial macrophyte decomposition and the decomposition of detritus that was 
partially decomposed. In addition, multi-model inference was used to generate models that explained 
decomposition rates; Results: The results showed that initial concentrations of phosphorus and carbon 
are the best predictors of decomposition rates of senescent tissues. When we evaluated the decomposition 
of partially decomposed detritus, the nitrogen content assumed an important role in determining 
decomposition rates. However, all candidate models had high explanatory strength; Conclusions: We 
argue that multi-model inference is a powerful strategy for explaining the impact of nutrient quality on 
macrophyte decomposition in the Upper Paraná River floodplain.

Keywords: macrophytes, decomposition rate, nutrient content, model selection, multi-model 
inference.

Resumo: Objetivo: Nesse estudo, utilizamos diferentes protocolos estatísticos para avaliar qual 
nutriente está mais relacionado com a decomposição de várias espécies de macrófitas senescentes e detritos 
em uma lagoa da planície de inundação do Alto Rio Paraná; Métodos: Tecidos senescentes de macrófitas 
pertencentes a vários tipos biológicos foram deixados para decompor em sacos de decomposição. A 
concentração de nutrientes foi quantificada antes e depois das incubações. Regressões simples, regressões 
múltiplas e o critério de informação de Akaike foram utilizados para avaliar qual nutriente está mais 
relacionado com a decomposição inicial das macrófitas e com a decomposição de detritos parcialmente 
decompostos. Adicionalmente, a inferência multi-modelo foi utilizada para gerar modelos para explicar 
os coeficientes de decomposição; Resultados: Os resultados mostraram que as concentrações iniciais de 
fósforo e carbono são os melhores nutrientes que explicam as taxas de decomposição de tecidos senescentes. 
Quando avaliamos a decomposição de detritos parcialmente decompostos, a quantidade de nitrogênio 
assume um importante papel na decomposição. Entretanto, nenhum dos modelos candidatos teve um alto 
poder de explicação; Conclusões: Concluímos que a inferência multi-modelo é uma estratégia poderosa 
para explicar a decomposição de macrófitas através da qualidade de nutrientes na planície de inundação 
do Alto Rio Paraná.

Palavras-chave: macrófitas, taxa de decomposição, quantidade de nutrientes, seleção de modelos, 
inferência multi-modelo.
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1. Introduction

The decomposition of macrophytes is an essential 
process in aquatic ecosystems because it transforms or-
ganic matter and contributes to nutrient cycling (Wetzel, 
2001; Rejmánková and Houdková, 2006). According to 
Meentemeyer (1984), at reduced spatial scales, factors such 
as the nutrient content of the detritus substantially affect 
decomposition rates. In fact, several authors highlight the 
effects of macrophyte detritus quality upon decomposition 
dynamics (Villar et al., 2001; Elger and Willby, 2003; Padial 
and Thomaz, 2006; Bragazza et al., 2007). It is widely ac-
cepted that higher amounts of nutrients such as nitrogen 
and phosphorus are associated with higher decomposition 
rates (Rejmánková and Sirová, 2007). Accordingly, pre-
dictive models of decomposition are based mainly on the 
chemical compounds of the plants (Bianchini Jr, 2003; 
Weerakkody and Parkinson, 2006). 

Large data sets with decomposition rates from sev-
eral different species are available (Bianchini Jr., 2003). 
However, studies reporting these data usually compare 
between species but do not look for trends across species. 
Additionally, most studies about macrophyte decomposi-
tion usually focus on only one or a few species (Pagioro 
and Thomaz, 1999; Villar et al., 2001; Padial and Thomaz, 
2006). Macrophyte tissues of different life forms have wide-
ly different characteristics (Esteves, 1998), and such variety 
offers an excellent opportunity to analyze decomposition 
trends across species. Such variation makes it possible to 
apply, for example, a predictive approach; this approach has 
been used for several other limnological issues (maximum 
depth of macrophyte colonization predicted by Secchi disk, 
Chambers and Kalff, 1985, and maximum plant biomass 
predicted by littoral slope, Duarte and Kalff, 1986). In fact, 
predictive models also have the advantage of testing scien-
tific concepts (Pace, 2001). For example, the generation 
of predictive models of decomposition is fundamental to 
making inferences about the main components associated 
with decomposition rates and to clarifying the dynamics 
of nutrients in ecosystems. 

Two basic approaches have been used to interpret 
ecological data (Johnson and Omland, 2004). The first is 
based on null hypothesis tests, in which stepwise proce-
dures are commonly used in multiple regression analyses. 
This approach has several recognized problems and pitfalls 
(Burnham and Anderson, 2002; Whittingham et al., 2006). 
For example, by maximizing the explanation coefficient 
(R2) in traditional modeling, stepwise procedures always 
favor models with a high number of parameters and ne-
glect the principle of parsimony (Johnson and Omland, 
2004). By contrast, model selection offers an alternative 
way to draw inferences from a set of multiple competing 
hypotheses and takes parsimony into account (Burnham 
and Anderson, 2002). 

Model selection is a robust framework that allows biolo-
gists to make inferences using modern statistical approaches 
(Johnson and Omland, 2004). In short, model selection 
can be understood by the selection of the best model 
(among a set of candidate models) using a criterion based 
on likelihood theory (usually Akaike information criterion 
or AIC, see Burnham and Anderson, 2002). This approach 
has its foundations in information theory and parsimony. 
Furthermore, studies with a predictive approach can use 
the so called multi-model inference commonly based on 
model averaging, an approach that uses information from 
all candidate models to estimate accurate coefficients 
(Burnham and Anderson, 2002).

In this study, we used macrophytes belonging to dif-
ferent life forms to look for decomposition trends across 
species. We aimed to evaluate which nutrient content best 
explains the decomposition of senescent macrophytes and 
detritus for several species in a lake of the Upper Paraná 
River floodplain. By using model selection, we first selected 
the best model among a set of candidate models that ex-
plain macrophyte decomposition rate through macrophyte 
chemical composition. Then, we used model averaging to 
make more precise correlations of macrophyte decomposi-
tion rates with macrophyte chemical composition.

2. Material and Methods

We selected 14 species of macrophytes belonging to 
different life forms that are common to the Paraná River 
floodplain (Brazil): Chara guairensis (R Bicudo), Nitella 
furcata (Roxburgh ex Bruzelius; C. Agardh emend R. D. 
Wood), Cabomba furcata (Schult & Schult.f ), Utricularia 
foliosa (L.), Egeria najas (Planch.), Potamogeton cf. 
 pusillus (L.), Heteranthera sp. (Ruiz & Pav.) (submersed); 
Eichhornia crassipes (Mart.; Solms), Salvinia herzogii (de la 
Sota) (free-floating); Pontederia cordata (L.), Cyperus sp. 
(L.), Oxycaryum cubensis (Poepp. & Kunth) (emergent); 
Eichhornia azurea (Kunth) (rooted with floating stems 
and emergent leaves); and Nymphaea amazonum (Mart. & 
Zucc.) (rooted with floating leaves). Senescent leaves and 
petioles of these species (ca. 100 g of fresh weight) were si-
multaneously left to decompose in litter bags (0.2 × 0.5 cm 
mesh) in the same lagoon of the Upper Paraná River flood-
plain. Therefore, limnological features (e.g., pH, oxygen, 
temperature) affected all bags similarly. To increase variation 
among samples, we also used only roots of E. azurea and 
E.  crassipes in separate litter bags. We used three replicated 
litter bags per detritus type, resulting in 48 bags. Detritus 
dry mass was measured before and after 6 days of decompo-
sition. Initial dry mass was measured by using extrapolations 
obtained for the independent relationships between fresh 
and dry mass for each species or each type of tissue used. 
The decomposition rates were estimated based on Olson’s 
equation (Olson, 1963). 
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The concentrations of carbon (C), phosphorus (P) and 
nitrogen (N) in detritus were also quantified before and after 
incubation in the field (i.e., at day 6). After being weighed 
and pulverized, an aliquot (ca. 0.2 g) was combusted in a 
muffle furnace at 550 °C for 4 hours for the determination 
of carbon content relative to dry mass (after multiplying the 
remaining weight by 0.4; Allen et al., 1976). Phosphorus 
concentrations were measured in a spectrophotometer after 
acid digestion of an aliquot (0.3 g dry mass) and subsequent 
reaction with molybdenum using ascorbic acid (Mackereth 
et al., 1978). N concentrations were obtained after acid 
digestions of an aliquot (0.3 g dry mass) followed by steam 
distillation with a titrimetric finish (Kjeldahl nitrogen; 
Golterman et al., 1978).

We used two sets of predictors to explain decomposition 
rates: the nutrient contents of macrophytes measured before 
and after decomposition. This strategy was chosen because 
these two predictors represent different ecological meanings. 
By correlating initial nutrient contents with decomposition 
rates, we aim to explain the future decomposition of senes-
cent macrophytes. Alternatively, by using nutrient contents 
after decomposition as predictors, we attempt to explain 
the decomposition of partially-decomposed detritus (after 
6 days of decomposition in situ).

Firstly, we used simple regressions (linear or non linear) 
with C:N, C:P and N:P ratios (calculated both with nutri-
ent contents measured before and after decomposition) as 
exploratory variables and decomposition rate as the response 
variable. Ratios were used because they are thought to be 
more strongly related to decomposition than the nutri-
ent concentrations alone (Day, 1982). Secondly, we used 
multiple linear regressions based on standard stepwise 
procedures, with C, N and P concentrations as predictors. 
Again, we used both the nutrient contents before and after 
decomposition. For these analyses, we considered significant 
relationships when the type I error was less than 0.01.

In addition to these traditional techniques, we used 
model selection based on Akaike information criterion 
corrected for small samples (AICc) to select the model 
that best explains the decomposition rate from among a 
set of candidate models. The lowest AICc value indicates 
the best model (Burnham and Anderson, 2002). Similarly 
to the simple and multiple regressions, we used two sets of 
predictors to generate two sets of candidate models. The first 
set was comprised of models that used C, P and N concen-
trations measured before decomposition as predictors. The 
second set used the nutrient contents after decomposition 
as predictors (i.e., at day 6). Each set of candidate models 
contained seven models; each model represented a linear 
relationship between one or more predictors and decom-
position rate (e.g., model 1: just P as predictor, model 2: 
P and N as predictors, model 3: C and N as predictors, etc.). 
We chose this approach because the AICc value is a result 
of a parsimonious choice that maximizes the goodness- of-

fit and minimizes model complexity (i.e., the number of 
predictors). Therefore, model selection can show different 
results compared to traditional techniques. Models were 
also compared by the Akaike weight (AICc wi); which is a 
measure of the relative likelihood of the model given the 
data. The AICc wis are normalized across the set of candi-
date models to sum one, and are interpreted as probabilities 
(Johnson and Omland, 2004).

Multi-model inferences based on model averaging were 
used for both sets of candidate models to enhance the ac-
curacy in coefficient estimations. This is a procedure that 
gathers information of multi-models to produce a new and 
powerful model. It accounts for uncertainty in model selec-
tion in order to obtain robust estimates of model coefficients 
(Johnson and Omland, 2004). In this analysis, a constant 
and the coefficients of each variable are calculated, together 
with their standard error (Burnham and Anderson, 2002). 
Additionally, the generated coefficients are accompanied 
by an importance value based on the AICc wi (Johnson 
and Omland, 2004). This value indicates the relative 
importance of each predictor for the model generated by 
model averaging. SAM software (Rangel et al., 2006) was 
used for model selection procedures and multi-model infer-
ences. STATISTICA software (Statsoft, 2005) was used for 
regressions analyses and to make figures.

3. Results

Decomposition rates varied from 0.0025 to 0.30 d–1 
across species. Accordingly, macrophyte nutrient con-
tents before (C: 20.48 to 38.14% Dry Mass; P: 0.03 to 
0.28 mg.g–1; and N: 0.47 to 2.50 mg.g–1) and after de-
composition (C: 15.67 to 39.32% Dry Mass; P: 0.04 to 
0.61 mg.g–1; and N: 0.53 to 7.54 mg.g–1) also had wide 
ranges.

Only the simple regression using the N:P ratio before 
decomposition as a predictor of decomposition rate was 
not significant (Figure 1; it is important to note that if we 
have considered significant values when P < 0.05, simple 
regression using N:P would be significant). The other ratios 
(C:N and C:P) had significant (P < 0.01) non linear rela-
tionships with decomposition rate (Figure 1). In this case, 
simple regression with the C:P ratio as the predictor had 
the highest explanation coefficient (R2 = 0.43; Figure 1). 
Multiple linear regression also revealed that only initial P 
and C concentrations were significant, with an adjusted 
coefficient of explanation of 0.405 (k = 0.32 + 0.35*P – 
0.44*C; P < 0.01). 

The best model, according to AICc criterion, correlates 
initial P and C concentrations with decomposition rates 
(Table 1). The goodness-of-fit of the best model is very 
similar to that of the second-best model (uses all nutrient 
contents as predictors). In spite of this, the best model has 
a reasonably higher AICc wi than the second-best model 
(Table 1). This is due to the parsimonious nature of model 
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explained by the C:N and C:P ratios, using non linear equa-
tions (Figure 2; here again, if we have considered significant 
values when P < 0.05, simple regression using N:P would 
be significant). In addition, the C:N ratio was the best pre-
dictor of the decomposition rate of partially decomposed 
detritus according to the explanation coefficient (R2 = 0.40; 
Figure 2). However, only N and P concentrations were sig-
nificant predictors according to multiple linear regression 
(R2 = 0.66; k = 0.32 + 0.52*P – 0.47*N; P < 0.01).

Similarly to the simple regressions, model selection 
elected the model that correlates C and N concentrations 
after decomposition with decomposition rates as the best 
among the candidate models, (Table 3). Coefficients based 
on model averaging, together with their standard errors, 
are shown in table 4. After decomposition, the importance 
values were similar among the three predictors (Table 4).

4. Discussion

The chemical composition of the selected macrophytes 
varied greatly and, thus, our samples from species belong-
ing to different life forms represented a broad array of 
detritus nutrient contents and decomposition rates. This 
provides robustness to our models that explain decompo-
sition rates across species through macrophyte chemical 
composition. 

According to all the analyses that considered nutrient 
content prior to decomposition, P and C were the most 
important nutrients affecting these decomposition rates. 
The importance of these nutrients in decomposition has 

selection, which punishes models with more predictors. The 
coefficients of the model based on model averaging, together 
with their standard errors, are summarized in Table 2. The 
importance values also indicate that tissue P and C are the 
most important predictors of decomposition.

After six days of decomposition, simple regressions 
show that decomposition rates were significantly (P < 0.01) 
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Figure 1. Simple regressions between decomposition rates and 
initial nutrient ratios. Equations are shown within the graphs. 
The explanation coefficient (R2) and the significance of each 
model (P) are also shown. k = decomposition rate; C = Carbon; 
N = Nitrogen and; P = Phosphorus. 

Table 1. Model selection procedure sorted by AICc for models 
correlating nutrient content (measured before decomposition) 
and decomposition rates. Adj R2 means the adjusted coefficient 
of determination of the linear regression of each model. 

Variables Adj R2 AICc AICc wi
P, C 0.405 –120.407 0.692
P, N, C 0.400 –118.509 0.268
C 0.294 –113.481 0.022
N, C 0.299 –112.508 0.013
P 0.243 –110.165 0.004
P, N 0.234 –108.268 0.002
N 0.030 –98.264 <0.001

Table 2. Multi-model inference procedure showing the coeffi-
cients, with their importance values and their standard error, of 
each variable of the model based on multi-model inference (for 
models correlating nutrient content before decomposition and 
decomposition rate).

Variables Importance Coefficient Standard error
Constant - 0.329 0.102

P 0.965 0.445 0.141
N 0.283 0.014 0.005
C 0.994 –0.004 0.001
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rates and faster dry mass losses. In addition, organic matter 
content (directly related to carbon content) is considered 
to be among the most important determinants of aquatic 
macrophyte detritus quality (Elger and Willby, 2003).

With our strategy of using multi-model inference 
(based on model averaging), we were able to generate a 
model relating decomposition rate to the initial chemical 
composition of macrophytes in the Upper Paraná River 
floodplain. According to Johnson and Omland (2004), 
model averaging should be used when the underlying goal 
of model selection is coefficient estimation or prediction 
and no single model is highly supported by the data (i.e., 
AICc wi for the best model < 0.9). Given that AICc wi of 
the best model was only 0.692 (Table 1), and explanation 
coefficients (R2) were not conspicuously high, the use of 
this procedure seems reasonable to explain variability in 
macrophyte decomposition rates due to differences in initial 
nutrient contents. In model averaging, coefficients were cal-
culated taking into account the relative importance of each 
nutrient; thus, representing a better attempt at explaining 
and maybe predicting macrophyte decomposition in this 
Neotropical floodplain.

After six days of decomposition, conflicting results 
were obtained by different analytical methods. The C and 
N concentrations of detritus are considered the important 
predictors according to AICc and simple regression models, 
but N and P concentrations are the most important predic-
tors according to multiple linear regression. In addition, if 
only the goodness-of-fit is considered in model selection 
(instead of AICc), we would elect the model comprised by 

been found by others (Rejmánková and Houdková, 2006), 
and it is not a surprise in the Upper Paraná River habitats, 
where phosphorus has been considered the main limiting 
nutrient of microbial activity (Thomaz et al., 2001; Thomaz 
et al., 2004). Detritus richer in P is more susceptible to 
higher bacterial activities that lead to higher decomposition 
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Figure 2. Simple regressions between decomposition rates and 
nutrient ratios of partially decomposed detritus. Equations are 
shown within the graphs. The explanation coefficient (R2) and the 
significance of each model (P) are also shown. k = decomposition 
rate; C = Carbon; N = Nitrogen and; P = Phosphorus.

Table 3. Model selection procedure sorted by AICc for models 
correlating nutrient content (measured six days of decomposition) 
and decomposition rates. Adj R2 means the adjusted coefficient 
of determination of the linear regression of each model. 

Variables Adj R2 AICc AICc wi
N, C 0.376 –118.113 0.250
P, N, C 0.394 –118.077 0.246
P, N 0.375 –117.997 0.236
P 0.338 –116.625 0.119
P, C 0.356 –116.559 0.115
N 0.299 –113.841 0.030
C 0.236 –109.698 0.004

Table 4. Multi-model inference procedure showing the coef-
ficients with their importance values and their standard error, of 
each variable of the model based on multi-model inference (for 
models correlating nutrient content after decomposition and 
decomposition rate).

Variables Importance Coefficient Standard error
Constant - 0.140 0.122

P 0.601 0.174 0.059
N 0.762 0.016 0.006
C 0.730 –0.002 <0.001
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conclusion as correct is difficult and arbitrary. In spite of 
this, model selection offered us the opportunity to evalu-
ate, through AICc wi, if the best model is good enough to 
draw conclusions or if multi-model inference should be 
used to mitigate biases.

In our case, since the two best models were not highly 
supported by the data (i.e., AICc wi < 0.9), they were not 
good enough to draw conclusions; therefore, multi-model 
inference should be used (Burnham and Anderson, 2002). 
In addition, linear regressions (both simple and multiple) 
also did not have conspicuously high explanation coeffi-
cients (R2 always lower than 0.66). Multi-model inference 
clarified that all nutrients have similar importance to explain 
decomposition rates of partially-decomposed detritus. 
In addition, this approach can circumvent shortfalls of 
multiple regressions when the goal is to furnish predictive 
models (Whittingham et al., 2006). In this sense, we stress 
that multi-model inference, a still underused approach, 
seems to be a more reliable way to understand the decom-
position of macrophytes.
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