Acta Limnologica Brasiliensia
http://www.alb.periodikos.com.br/article/doi/10.1590/S2179-975X10124
Acta Limnologica Brasiliensia
Original Article

Empirical evaluations between beta-diversity, environmental heterogeneity, and spatial extent among multiple taxonomic groups

Testes empíricos das relações entre diversidade beta, heterogeneidade ambiental e extensão espacial entre múltiplos grupos taxonômicos

Carlos Henrique Lopes Liborio

Downloads: 0
Views: 108

Abstract

Aim: Beta diversity is expected to increase due to environmental heterogeneity and spatial extent. However, it remains unknown whether the response of beta diversity to these variables is consistent among different taxonomic groups. I investigated whether the beta diversity of lacustrine phytoplankton, zooplankton, and macroinvertebrate communities within nine ecoregions in the United States of America correlates with environmental heterogeneity and spatial extent.

Methods: I used simple linear regression analyses to examine how the beta diversity of different communities was related to environmental heterogeneity and spatial extent.

Results: Phytoplankton and macroinvertebrate community's beta diversity was positively related to environmental heterogeneity, while zooplankton and macroinvertebrates' beta diversity was significantly related to the spatial extent (within ecoregions).

Conclusions: My results align with theoretical expectations that beta diversity increases due to environmental heterogeneity and spatial extent. These results contribute to a better understanding of processes structuring the composition of different aquatic communities in the United States.

Keywords

biodiversity patterns; environmental complexity; ecoregional diversity; aquatic communities

Resumo

Objetivo: É esperado que a diversidade beta aumente devido à heterogeneidade ambiental e à extensão espacial. No entanto, ainda é incerto se a resposta da diversidade beta a estes fatores é consistente entre diferentes grupos taxonômicos. Eu investigue se a diversidade beta de comunidades de fitoplâncton, zooplâncton e macroinvertebrados de lagos dentro de nove ecorregiões nos Estados Unidos da América se correlaciona com a heterogeneidade ambiental e extensão espacial.

Métodos: Utilizei análises de regressão linear simples para examinar como a diversidade beta de diferentes assembleias estava relacionada com a heterogeneidade ambiental e extensão espacial.

Resultados: A diversidade beta das assembleias de fitoplâncton e macroinvertebrados foi positivamente relacionada à heterogeneidade ambiental, enquanto a diversidade beta das assembleias zooplâncton e macroinvertebrados foi significativamente relacionada à extensão espacial (dentro das ecorregiões).

Conclusões: Esses resultados estão alinhados com as expectativas teóricas de que a diversidade beta aumenta devido à heterogeneidade ambiental e à extensão espacial. Esses resultados contribuem para uma melhor compreensão dos processos que estruturaram a composição de diferentes assembleias aquáticas nos Estados Unidos.

Palavras-chave

padrões de biodiversidade; complexidade ambiental; diversidade ecorregional; comunidades aquáticas

References

Agra, J., Cornelissen, T., Viana-Junior, A.B., & Callisto, M., 2024. A global synthesis and meta-analysis of the environmental heterogeneity effects on the freshwater biodiversity. Oikos 2024(1), e10186. http://doi.org/10.1111/oik.10186.

Anderson, M.J., 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58(3), 626-639. http://doi.org/10.1139/f01-004.

Anderson, M.J., Ellingsen, K.E., & McArdle, B.H., 2006. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9(6), 683-693. PMid:16706913. http://doi.org/10.1111/j.1461-0248.2006.00926.x.

Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., Harrison, S.P., Kraft, N.J.B., Stegen, J.C., & Swenson, N.G., 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14(1), 19-28. PMid:21070562. http://doi.org/10.1111/j.1461-0248.2010.01552.x.

Astorga, A., Death, R., Death, F., Paavola, R., Chakraborty, M., & Muotka, T., 2014. Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecol. Evol. 4(13), 2693-2702. PMid:25077020. http://doi.org/10.1002/ece3.1124.

Barton, P.S., Cunningham, S.A., Manning, A.D., Gibb, H., Lindenmayer, D.B., & Didham, R.K., 2013. The spatial scaling of beta diversity. Glob. Ecol. Biogeogr. 22(6), 639-647. http://doi.org/10.1111/geb.12031.

Beaver, J.R., Tausz, C.E., Renicker, T.R., Holdren, G.C., Hosler, D.M., Manis, E.E., Scotese, K.C., Teacher, C.E., Vitanye, B.T., & Davidson, R.M., 2014. The late summer crustacean zooplankton in western U.S.A. reservoirs reflects ecoregion, temperature and latitude. Freshw. Biol. 59(6), 1173-1186. http://doi.org/10.1111/fwb.12338.

Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel, H., Denys, L., Vanhecke, L., van der Gucht, K., van Wichelen, J., Vyverman, W., & Declerck, S.A.J., 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 15(7), 740-747. PMid:22583795. http://doi.org/10.1111/j.1461-0248.2012.01794.x.

Bini, L.M., Landeiro, V.L., Padial, A., Siqueira, T., & Heino, J., 2014. Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95(6), 1569-1578. PMid:25039221. http://doi.org/10.1890/13-0656.1.

Brown, J.H., 1984. On the relationship between abundance and distribution of species. Am. Nat. 124(2), 255-279. http://doi.org/10.1086/284267.

Cai, Y., Xu, H., Vilmi, A., Tolonen, K.T., Tang, X., Qin, B., Gong, Z., & Heino, J., 2017. Relative roles of spatial processes, natural factors and anthropogenic stressors in structuring a lake macroinvertebrate metacommunity. Sci. Total Environ. 601-602, 1702-1711. PMid:28618660. http://doi.org/10.1016/j.scitotenv.2017.05.264.

Carvalho, T.S., Jesus, E.D.C., Barlow, J., Gardner, T.A., Soares, I.C., Tiedje, J.M., & Moreira, F.M.D.S., 2016. Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology 97(10), 2760-2771. PMid:27859123. http://doi.org/10.1002/ecy.1513.

Daleo, P., Alberti, J., Chaneton, E.J., Iribarne, O., Tognetti, P.M., Bakker, J.D., Borer, E.T., Bruschetti, M., MacDougall, A.S., Pascual, J., Sankaran, M., Seabloom, E.W., Wang, S., Bagchi, S., Brudvig, L.A., Catford, J.A., Dickman, C.R., Dickson, T.L., Donohue, I., Eisenhauer, N., Gruner, D.S., Haider, S., Jentsch, A., Knops, J.M.H., Lekberg, Y., McCulley, R.L., Moore, J.L., Mortensen, B., Ohlert, T., Pärtel, M., Peri, P.L., Power, S.A., Risch, A.C., Rocca, C., Smith, N.G., Stevens, C., Tamme, R., Veen, G.F., Wilfahrt, P.A., & Hautier, Y., 2023. Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass. Nat. Commun. 14(1), 1809. PMid:37002217. http://doi.org/10.1038/s41467-023-37395-y.

de Wit, R., & Bouvier, T., 2006. “Everything is everywhere, but the environment selects”; what did Baas Becking and Beijerinck really say? Environ. Microbiol. 8(4), 755-758. PMid:16584487. http://doi.org/10.1111/j.1462-2920.2006.01017.x.

Diniz, L.P., Braghin, L.D.S.M., Pinheiro, T.S.A., Melo, P.A.M.D.C., Bonecker, C.C., & Melo Júnior, M.D., 2021. Environmental filter drives the taxonomic and functional β-diversity of zooplankton in tropical shallow lakes. Hydrobiologia 848(8), 1881-1895. http://doi.org/10.1007/s10750-021-04562-5.

Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.-I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J., & Sullivan, C.A., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81(2), 163-182. PMid:16336747. http://doi.org/10.1017/S1464793105006950.

Galir Balkić, A., Ternjej, I., & Bogut, I., 2018. Impact of habitat heterogeneity on zooplankton assembly in a temperate river-floodplain system. Environ. Monit. Assess. 190(3), 143. PMid:29450746. http://doi.org/10.1007/s10661-018-6524-7.

García-Girón, J., Heino, J., Baastrup-Spohr, L., Clayton, J., Winton, M., Feldmann, T., Fernández-Aláez, C., Ecke, F., Hoyer, M.V., Kolada, A., Kosten, S., Lukács, B.A., Mormul, R.P., Rhazi, L., Rhazi, M., Sass, L., Xu, J., & Alahuhta, J., 2020. Elements of lake macrophyte metacommunity structure: global variation and community-environment relationships. Limnol. Oceanogr. 65(12), 2883-2895. http://doi.org/10.1002/lno.11559.

Godoy, B.S., Siqueira, T., & Hughes, R.M., 2025. The influence of spatial extent and distance on macroinvertebrate-environment relationships in conterminous USA stream sites. J. Biogeogr. 52(9), e15187. http://doi.org/10.1111/jbi.15187.

Godsoe, W., Bellingham, P.J., & Moltchanova, E., 2022. Disentangling niche theory and beta diversity change. Am. Nat. 199(4), 510-522. PMid:35324385. http://doi.org/10.1086/718592.

Gómez, J.P., Bravo, G.A., Brumfield, R.T., Tello, J.G., & Cadena, C.D., 2010. A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds. J. Anim. Ecol. 79(6), 1181-1192. PMid:20642767. http://doi.org/10.1111/j.1365-2656.2010.01725.x.

Heino, J., Grönroos, M., Ilmonen, J., Karhu, T., Niva, M., & Paasivirta, L., 2013. Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshw. Sci. 32(1), 142-154. http://doi.org/10.1899/12-083.1.

Heino, J., Melo, A.S., & Bini, L.M., 2015a. Reconceptualising the beta diversity environmental heterogeneity relationship in running water systems. Freshw. Biol. 60(2), 223-235. http://doi.org/10.1111/fwb.12502.

Heino, J., Melo, A.S., Siqueira, T., Soininen, J., Valanko, S., & Bini, L.M., 2015b. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60(5), 845-869. http://doi.org/10.1111/fwb.12533.

Hepp, L.U., & Melo, A.S., 2013. Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia 703(1), 239-246. http://doi.org/10.1007/s10750-012-1367-7.

Herlihy, A.T., Paulsen, S.G., Sickle, J.V., Stoddard, J.L., Hawkins, C.P., & Yuan, L.L., 2008. Striving for consistency in a national assessment: the challenges of applying a reference-condition approach at a continental scale. J. N. Am. Benthol. Soc. 27(4), 860-877. http://doi.org/10.1899/08-081.1.

Kessler, M., Abrahamczyk, S., Bos, M., Buchori, D., Putra, D.D., Gradstein, S.R., Höhn, P., Kluge, J., Orend, F., Pitopang, R., Saleh, S., Schulze, C.H., Sporn, S.G., Steffan-Dewenter, I., Tjitrosoedirdjo, S.S., & Tscharntke, T., 2009. Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecol. Appl. 19(8), 2142-2156. PMid:20014584. http://doi.org/10.1890/08-1074.1.

Kotler, B.P., & Brown, J.S., 1988. Environmental heterogeneity and the coexistence of desert rodents. Annu. Rev. Ecol. Syst. 19(1), 281-307. http://doi.org/10.1146/annurev.es.19.110188.001433.

Lansac-Tôha, F.M., Bini, L.M., Heino, J., Meira, B.R., Segovia, B.T., Pavanelli, C.S., Bonecker, C.C., Deus, C.P., Benedito, E., Alves, G.M., Manetta, G.I., Dias, J.D., Vieira, L.C.G., Rodrigues, L.C., Carmo Roberto, M., Brugler, M.R., Lemke, M.J., Tessler, M., DeSalle, R., Mormul, R.P., Amadio, S., Lolis, S.F., Jati, S., Siqueira, T., Silva, W.M., Higuti, J., Lansac-Tôha, F.A., Martens, K., & Velho, L.F.M., 2021. Scale-dependent patterns of metacommunity structuring in aquatic organisms across floodplain systems. J. Biogeogr. 48(4), 872-885. http://doi.org/10.1111/jbi.14044.

Lansac-Tôha, F.M., Heino, J., Quirino, B.A., Moresco, G.A., Peláez, O., Meira, B.R., Rodrigues, L.C., Jati, S., Lansac-Tôha, F.A., & Velho, L.F.M., 2019. Differently dispersing organism groups show contrasting beta diversity patterns in a dammed subtropical river basin. Sci. Total Environ. 691, 1271-1281. http://doi.org/10.1016/j.scitotenv.2019.07.236.

Legendre, P., & Borcard, D., 2018. Box-Cox-chord transformations for community composition data prior to beta diversity analysis. Ecography 1-5(11), 1820-1824. http://doi.org/10.1111/ecog.03498.

Liborio, C.H.L., & Bini, L.M., 2024. Concordance among lacustrine communities are low and inconsistent in the conterminous United States. Oecologia 205(2), 271-279. http://doi.org/10.1007/s00442-024-05573-4.

Liborio, C.H.L., & Bini, L.M., 2025. Assessing the correspondence between lacustrine communities and environmental regionalizations derived from large-scale and local drivers. Inland Waters. In press. http://doi.org/10.1080/20442041.2025.2526946.

Liborio, C.H.L., & Loyola-Bartra, O., 2025. Lake metacommunity structures are consistent among ecoregions and taxonomic groups across the United States. Freshw. Biol. 70(6), e70065. http://doi.org/10.1111/fwb.70065.

Lopes, P.M., Bini, L.M., Declerck, S.A.J., Farjalla, V.F., Vieira, L.C.G., Bonecker, C.C., Lansac-Tôha, F.A., Esteves, F.A., & Bozelli, R.L., 2014. Correlates of zooplankton beta diversity in tropical lake systems. PLoS One 9(10), e109581. PMid:25330034. http://doi.org/10.1371/journal.pone.0109581.

Mammola, S., Fukushima, C.S., Biondo, G., Bongiorni, L., Cianferoni, F., Domenici, P., Fruciano, C., Lo Giudice, A., Macías-Hernández, N., Malumbres-Olarte, J., Miličić, M., Morganti, M., Mori, E., Munévar, A., Pollegioni, P., Rosati, I., Tenan, S., Urbano-Tenorio, F., Fontaneto, D., & Cardoso, P., 2023. How much biodiversity is concealed in the word ‘biodiversity’? Curr. Biol. 33(2), R59-R60. PMid:36693307. http://doi.org/10.1016/j.cub.2022.12.003.

Martín-Devasa, R., Jiménez-Valverde, A., Leprieur, F., Baselga, A., & Gómez-Rodríguez, C., 2024. Dispersal limitation shapes distance-decay patterns of European spiders at the continental scale. Glob. Ecol. Biogeogr. 33(4), e13810. http://doi.org/10.1111/geb.13810.

Melo, A.S., Rangel, T.F.L.V.B., & Diniz-Filho, J.A.F., 2009. Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32(2), 226-236. http://doi.org/10.1111/j.1600-0587.2008.05502.x.

Mondal, R., & Bhat, A., 2022. Different mechanisms drive beta diversity of freshwater fishes across similar ecoregions in India. Aquat. Sci. 84(2), 25. http://doi.org/10.1007/s00027-022-00859-2.

Mori, A.S., Isbell, F., & Seidl, R., 2018. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33(7), 549-564. PMid:29807839. http://doi.org/10.1016/j.tree.2018.04.012.

Omernik, J.M., 1995. Ecoregions: a spatial framework for environmental management. In: Davis, W.S., & Simon, T., eds. Biological assessment and criteria: tools for water resource planning and decision making. Boca Raton, FL: Lewis.

Ortega, J.C.G., Thomaz, S.M., & Bini, L.M., 2018. Experiments reveal that environmental heterogeneity increases species richness, but they are rarely designed to detect the underlying mechanisms. Oecologia 188(1), 11-22. PMid:29736864. http://doi.org/10.1007/s00442-018-4150-2.

Padial, A.A., Ceschin, F., Declerck, S.A.J., De Meester, L., Bonecker, C.C., Lansac Tôha, F.A., Rodrigues, L., Rodrigues, L.C., Train, S., Velho, L.F.M., & Bini, L.M., 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS One 9(10), e111227. PMid:25340577. http://doi.org/10.1371/journal.pone.0111227.

Potapova, M.G., & Charles, D.F., 2002. Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. J. Biogeogr. 29(2), 167-187. http://doi.org/10.1046/j.1365-2699.2002.00668.x.

R Core Team, 2023. R: a language and environment for statistical computing. Version 4.3.0. Vienna: R Foundation for Statistical Computing. Retrieved in 2024, November 21, from http://www.r-project.org

Ramos, E.D.A., Ramos Okumura, A.T., Silva, A.G., Pereira, T.L., & Simões, N.R., 2023. Alpha and beta diversity of planktonic microcrustaceans are associated with environmental heterogeneity in the Frades River Basin, Brazil. Stud. Neotrop. Fauna Environ. 58(2), 226-237. http://doi.org/10.1080/01650521.2021.1933702.

Reu, J.C., Catano, C.P., Spasojevic, M.J., & Myers, J.A., 2022. Beta diversity as a driver of forest biomass across spatial scales. Ecology 103(10), e3774. PMid:35634996. http://doi.org/10.1002/ecy.3774.

Rizo, E.Z.C., Liu, P., Niu, H., Yang, Y., Lin, Q., Papa, R.D.S., Dumont, H.J., & Han, B.P., 2020. Zooplankton in a continuous waterscape: environmental and spatial factors shaping spring zooplankton community structure in a large canyon reservoir at the Tropic of Cancer. Hydrobiologia 847(17), 3621-3635. http://doi.org/10.1007/s10750-020-04380-1.

Rodríguez-Alcalá, O., Blanco, S., García-Girón, J., Jeppesen, E., Irvine, K., Nõges, P., Nõges, T., Gross, E.M., & Bécares, E., 2020. Large-scale geographical and environmental drivers of shallow lake diatom metacommunities across Europe. Sci. Total Environ. 707, 135887. PMid:31862432. http://doi.org/10.1016/j.scitotenv.2019.135887.

Salk, K.R., Venkiteswaran, J.J., Couture, R., Higgins, S.N., Paterson, M.J., & Schiff, S.L., 2022. Warming combined with experimental eutrophication intensifies lake phytoplankton blooms. Limnol. Oceanogr. 67(1), 147-158. http://doi.org/10.1002/lno.11982.

Shurin, J.B., Cottenie, K., & Hillebrand, H., 2009. Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159(1), 151-159. PMid:18941791. http://doi.org/10.1007/s00442-008-1174-z.

Si, Y., Wang, J., Li, H., Li, H., He, P., Jin, L., & Liu, C., 2025. Waterbody type dependence of the spatial distribution of macroinvertebrate communities in temperate China. Front. Ecol. Evol. 13, 1538755. http://doi.org/10.3389/fevo.2025.1538755.

Siegloch, A.E., Silva, A.L.L., Silva, P.G., & Hernández, M.I.M., 2018. Local and regional effects structuring aquatic insect assemblages at multiple spatial scales in a mainland-island region of the Atlantic Forest. Hydrobiologia 805(1), 61-73. http://doi.org/10.1007/s10750-017-3277-1.

Slatyer, R.A., Hirst, M., & Sexton, J.P., 2013. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16(8), 1104-1114. PMid:23773417. http://doi.org/10.1111/ele.12140.

Smith, J.R., Hendershot, J.N., Nova, N., & Daily, G.C., 2020. The biogeography of ecoregions: descriptive power across regions and taxa. J. Biogeogr. 47(7), 1413-1426. http://doi.org/10.1111/jbi.13871.

Smith, J.R., Letten, A.D., Ke, P.-J., Anderson, C.B., Hendershot, J.N., Dhami, M.K., Dlott, G.A., Grainger, T.N., Howard, M.E., Morrison, B.M.L., Routh, D., San Juan, P.A., Mooney, H.A., Mordecai, E.A., Crowther, T.W., & Daily, G.C., 2018. A global test of ecoregions. Nat. Ecol. Evol. 2(12), 1889-1896. PMid:30397301. http://doi.org/10.1038/s41559-018-0709-x.

Šorfová, V., Poláková, M., Bojková, J., Polášková, V., Schenková, J., & Horsák, M., 2022. Environmental heterogeneity, dispersal mode and habitat specialisation modify within-site beta diversity of spring macroinvertebrates. Int. Rev. Hydrobiol. 107(3-4), 145-153. http://doi.org/10.1002/iroh.202102112.

Steibl, S., & Russell, J.C., 2024. Beta-diversity within coral atolls: terrestrial species turnover increases with cyclone frequencies. Glob. Ecol. Biogeogr. 33(3), 450-457. http://doi.org/10.1111/geb.13797.

Stein, A., Gerstner, K., & Kreft, H., 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17(7), 866-880. PMid:24751205. http://doi.org/10.1111/ele.12277.

Stewart, N.A., & Schriever, T.A., 2023. Local environmental conditions influence species replacement in Great Lakes interdunal wetland macroinvertebrate communities. Freshw. Biol. 68(1), 46-60. http://doi.org/10.1111/fwb.14008.

Tolonen, K.T., Cai, Y., Vilmi, A., Karjalainen, S.M., Sutela, T., & Heino, J., 2018. Environmental filtering and spatial effects on metacommunity organisation differ among littoral macroinvertebrate groups deconstructed by biological traits. Aquat. Ecol. 52(1), 119-131. http://doi.org/10.1007/s10452-018-9649-4.

Tuomisto, H., 2010a. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33(1), 2-22. http://doi.org/10.1111/j.1600-0587.2009.05880.x.

Tuomisto, H., 2010b. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33(1), 23-45. http://doi.org/10.1111/j.1600-0587.2009.06148.x.

United States Environmental Protection Agency – USEPA. (2011). 2012 national lakes assessment: field operations manual. Washington, D.C.: USEPA. Retrieved in 2024, November 21, from https://www.epa.gov/national-aquatic-resource-surveys/nla

United States Environmental Protection Agency – USEPA. (2012). 2012 national lakes assessment: laboratory operations manual. Washington, D.C.: USEPA. Retrieved in 2024, November 21, from https://www.epa.gov/national-aquatic-resource-surveys/nla

United States Environmental Protection Agency – USEPA. (2024). Data from the national aquatic resource surveys. Washington, D.C.: USEPA. Retrieved in 2024, November 21, from https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys

Veech, J.A., & Crist, T.O., 2007. Habitat and climate heterogeneity maintain beta diversity of birds among landscapes within ecoregions. Glob. Ecol. Biogeogr. 16(5), 650-656. http://doi.org/10.1111/j.1466-8238.2007.00315.x.

Yampolsky, L.Y., Schaer, T.M.M., & Ebert, D., 2013. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proc. Biol. Sci. 281(1776), 20132744. PMid:24352948. http://doi.org/10.1098/rspb.2013.2744.
 


Submitted date:
11/21/2024

Accepted date:
09/09/2025

Publication date:
11/05/2025

690b9511a9539523242e25b6 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections