Acta Limnologica Brasiliensia
http://www.alb.periodikos.com.br/article/doi/10.1590/S2179-975X10324
Acta Limnologica Brasiliensia
Review Article

How is plankton affected by physical and chemical eutrophication control techniques? A systematic review

Como o plâncton é afetado pelas técnicas físicas e químicas de controle da eutrofização? Uma revisão sistemática

Fernanda Monicelli; Juliana Deo Dias; Fabiana Araújo; Jéssica Papera; Vanessa Becker

Downloads: 0
Views: 90

Abstract

Eutrophication control techniques primarily target the reduction of cyanobacterial biomass. However, it is crucial to consider the effects of these techniques on non-target planktonic organisms, as their dynamics and community structure are still not well understood.

Aim: The objective of this study was to perform a systematic review of the literature to observe the effects of chemical and physical eutrophication control techniques on planktonic organisms in eutrophic environments. It also aimed to evaluate bibliometric production and determine knowledge gaps.

Methods: The review was carried out based on the PRISMA methodology. The articles were searched in the databases of Scopus and Web of Science. The articles were screened so that only those within our objective remained. The systematic review was carried out with a final sample of 136 articles.

Results: The most frequently mentioned techniques were “Floc & Sink”, “Floc & Lock”, and algaecide application, (chemicals methods); aeration, dredging, and ultrasound (physical methods). There was an increase in the number of publications from 1974 until July 2020, especially on cyanobacteria. The identified gaps were studies on the zooplankton population and plankton community succession, and long-term experiments. All the chemical techniques remove cyanobacteria biomass or biovolume. Aeration, dredging, and ultrasound, which had conflicting results without conclusive findings. The few studies about the plankton community show positive effects on phytoplankton diversity after the “Floc & Sink” technique and an increase in richness after “Floc & Lock” and aeration. All the techniques negatively affect zooplankton, reducing biomass, survival, or abundance.

Conclusions: There are many studies on the effect of eutrophication control techniques on cyanobacteria, and they provide good removal of their biomass. However, there is a large gap regarding other phytoplankton taxonomic groups and zooplankton, making it difficult to draw definitive conclusions about the overall impacts of these techniques.

Keywords

biomass; cyanobacteria; phytoplankton; zooplankton

Resumo

As técnicas de controle da eutrofização visam principalmente a redução da biomassa de cianobactérias, no entanto, entender os efeitos dessas técnicas em organismos planctônicos não-alvo é crucial, pois sua dinâmica e estrutura de comunidade após a aplicação das técnicas ainda não são bem compreendidas.


Objetivo: Este estudo teve como objetivo realizar uma revisão sistemática da literatura para observar os efeitos das técnicas químicas e físicas de controle da eutrofização em organismos planctônicos em ambientes eutróficos. Também teve como objetivo avaliar a produção bibliométrica e determinar lacunas de conhecimento.

Métodos: A revisão foi realizada baseada na metodologia PRISMA, e para a busca dos artigos foi usada as bases de dados Scopus e Web of Science. Os artigos encontrados foram traidos para que permanecessem apenas aqueles dentro do nosso objetivo. A análise cienciométrica foi realizada com uma amostra final de 136 artigos.

Resultados: As técnicas que continham o maior número de estudos foram “Floc & Sink”, “Floc & Lock” e aplicação de algicidas (métodos químicos); aeração, dragagem e ultrassom (métodos físicos). Houve um aumento no número de publicações de 1974 até julho de 2020, especialmente sobre cianobactérias. As lacunas encontradas foram estudos sobre a população de zooplâncton e sucessão da comunidade planctônica, e experimentos de longo prazo. Todas as técnicas químicas conseguem remover biomassa ou biovolume de cianobactérias. Ao contrário da aeração, dragagem e ultrassom, que tiveram resultados conflitantes sem descobertas conclusivas. Os poucos estudos sobre comunidade mostram efeitos positivos na diversidade do fitoplâncton após a técnica “Floc & Sink” e um aumento na riqueza após “Floc & Lock” e aeração. Todas as técnicas afetaram negativamente o zooplâncton, reduzindo biomassa, sobrevivência ou abundância.

Conclusões: Existem muitos estudos sobre o efeito das técnicas em cianobactérias, e elas fornecem boa remoção dessa biomassa. No entanto, há uma grande lacuna em outros grupos taxonômicos de fitoplâncton e zooplâncton, por isso é difícil tirar conclusões definitivas sobre os impactos gerais dessas técnicas.

Palavras-chave

biomassa; cianobactérias; fitoplâncton; zooplâncton

Referencias

Akinnawo, S.O., 2023. Eutrophication: causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environ. Chall. 12, 100733. http://doi.org/10.1016/j.envc.2023.100733.

Álvarez-Manzaneda, I., & Vicente, I., 2017. Assessment of toxic effects of magnetic particles used for lake restoration on Chlorella sp. and on Brachionus calyciflorus. Chemosphere 187, 347-356. PMid:28858716. http://doi.org/10.1016/j.chemosphere.2017.08.129.

Álvarez-Manzaneda, I., Baun, A., Cruz-Pizarro, L., & de Vicente, I., 2019. Ecotoxicity screening of novel phosphorus adsorbents used for lake restoration. Chemosphere 222, 469-478. PMid:30721804. http://doi.org/10.1016/j.chemosphere.2019.01.103.

Araújo, F., Van Oosterhout, F., Becker, V., Attayde, J.L., & Lürling, M., 2018. Effects of polyaluminum chloride and lanthanum-modified bentonite on the growth rates of three Cylindrospermopsis raciborskii strains. PLoS One 13(4), e0195359. PMid:29614118. http://doi.org/10.1371/journal.pone.0195359.

Arco, A., Parra, G., & Vicente, I., 2018. Going deeper into phosphorus adsorbents for lake restoration: combined effects of magnetic particles, intraspecific competition and habitat heterogeneity pressure on Daphnia magna. Ecotoxicol. Environ. Saf. 148, 513-519. PMid:29125954. http://doi.org/10.1016/j.ecoenv.2017.11.001.

Ayala, R., Acosta, F., Mooij, W.M., Rejas, D., & Van Damme, P.A., 2007. Management of Laguna Alalay: a case study of lake restoration in Andean valleys in Bolivia. Aquat. Ecol. 41(4), 621-630. http://doi.org/10.1007/s10452-007-9123-1.

Barrington, D.J., Reichwaldt, E.S., & Ghadouani, A., 2013. The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecol. Eng. 50, 86-94. http://doi.org/10.1016/j.ecoleng.2012.04.024.

Bauzá, L., Aguilera, A., Echenique, R., Andrinolo, D., & Giannuzzi, L., 2014. Application of hydrogen peroxide to the control of eutrophic lake systems in laboratory assays. Toxins 6(9), 2657-2675. PMid:25208009. http://doi.org/10.3390/toxins6092657.

Bishop, W.M., & Richardson, R.J., 2018. Influence of Phoslock® on legacy phosphorus, nutrient ratios, and algal assemblage composition in hypereutrophic water resources. Environ. Sci. Pollut. Res. Int. 25(5), 4544-4557. PMid:29188598. http://doi.org/10.1007/s11356-017-0832-2.

Bishop, W.M., Willis, B.E., Richardson, R.J., & Cope, W.G., 2018. The presence of algae mitigates the toxicity of copper-based algaecides to a nontarget organism. Environ. Toxicol. Chem. 37(8), 2132-2142. PMid:29736933. http://doi.org/10.1002/etc.4166.

Burkholder, J.M., 2009. Harmful algal blooms. In: Likens, G.E., ed. Encyclopedia of inland waters. Cambridge: Academic Press, 264-285. http://doi.org/10.1016/B978-012370626-3.00239-8

Campos, B., Rivetti, C., Rosenkranz, P., Navas, J.M., & Barata, C., 2013. Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna. Aquat. Toxicol. 130–131, 174-183. PMid:23416410. http://doi.org/10.1016/j.aquatox.2013.01.005.

Chen, F.Z., Song, X.L., Hu, Y.H., Liu, Z.W., & Qin, B.Q., 2009. Water quality improvement and phytoplankton response in the drinking water source in Meiliang Bay of Lake Taihu, China. Ecol. Eng. 35(11), 1637-1645. http://doi.org/10.1016/j.ecoleng.2008.01.001.

Closson, K., & Paul, E., 2014. Comparison of the toxicity of two chelated copper algaecides and copper sulfate to non-target fish. Bull. Environ. Contam. Toxicol. 93(6), 660-665. PMid:25283368. http://doi.org/10.1007/s00128-014-1394-3.

Coloma, S.E., Dienstbier, A., Bamford, D.H., Sivonen, K., Roine, E., & Hiltunen, T., 2017. Newly isolated Nodularia phage influences cyanobacterial community dynamics. Environ. Microbiol. 19(1), 273-286. PMid:27878952. http://doi.org/10.1111/1462-2920.13601.

Cooke, G.D., Welch, E.B., Peterson, S.A., & Nichols, S.A., 2005. Restoration and Management of Lakes and Reservoirs. Boca Raton: CRC Press.

Cowell, B.C., Dawes, C.J., Gardiner, W.E., & Scheda, S.M., 1987. The influence of whole lake aeration on the limnology of a hypereutrophic lake in central Florida. Hydrobiologia 148(1), 3-24. http://doi.org/10.1007/BF00018162.

Dai, L., Yan, Q., Li, L., Li, H., Wang, L., Feng, W., Pan, G., & Yu, Y., 2013. Microplankton Community Dynamics During the algae removal process for nutrient control. Fres. Environ. Bul. 22(12), 3759-3767.

Drábková, M., Admiraal, W., & Maršálek, B., 2007. Combined exposure to hydrogen peroxide and light-selective effects on cyanobacteria, green algae, and diatoms. Environ. Sci. Technol. 41(1), 309-314. PMid:17265964. http://doi.org/10.1021/es060746i.

Estrada, V., Di Maggio, J., & Diaz, M.S., 2011. Water sustainability: a systems engineering approach to restoration of eutrophic Lakes. Comput. Chem. Eng. 35(8), 1598-1613. http://doi.org/10.1016/j.compchemeng.2011.03.003.

Fontaneto, D., Martínez, A., Mammola, S., & Marchetto, A., 2021. The use of the term ‘limnology’ and its scientometrics consequences for limnologists. J. Limnol. 80(3), http://doi.org/10.4081/jlimnol.2021.2042.

Frau, D., Spies, M.E., Battauz, Y., Medrano, J., & Sinistro, R., 2019. Approaches for phosphorus removal with calcium hydroxide and floating macrophytes in a mesocosm experiment: impacts on plankton structure. Hydrobiologia 828(1), 287-299. http://doi.org/10.1007/s10750-018-3819-1.

Galvez-Cloutier, R., Saminathan, S.K.M., Boillot, C., Triffaut-Bouchet, G., Bourget, A., & Soumis-Dugas, G., 2012. An evaluation of several in-lake restoration techniques to improve the water quality problem (eutrophication) of Saint-Augustin Lake, Quebec, Canada. Environ. Manage. 49(5), 1037-1053. PMid:22476666. http://doi.org/10.1007/s00267-012-9840-7.

Grover, J.P., Roelke, D.L., Brooks, B.W., Gable, G.M., Neisch, M.T., Hayden, N.J., Valenti Junior, T.W., Prosser, K.N., Umphres, G.D., & Hewitt, N.C., 2013. Ammonium treatments to suppress toxic blooms of Prymnesium parvum in a subtropical lake of semi-arid climate: results from in situ mesocosm experiments. Water Res. 47(13), 4274-4285. PMid:23764578. http://doi.org/10.1016/j.watres.2013.05.001.

Hao, H., Wu, M., Chen, Y., Tang, J., & Wu, Q., 2004. Cavitation mechanism in cyanobacterial growth inhibition by ultrasonic irradiation. Colloids Surf. B Biointerfaces 33(3–4), 151-156. http://doi.org/10.1016/j.colsurfb.2003.09.003.

Hilt, S., Gross, E.M., Hupfer, M., Morscheid, H., Mählmann, J., Melzer, A., Poltz, J., Sandrock, S., Scharf, E.M., Schneider, S., & van de Weyer, K., 2006. Restoration of submerged vegetation in shallow eutrophic lakes: a guideline and state of the art in Germany. Limnologica 36(3), 155-171. http://doi.org/10.1016/j.limno.2006.06.001.

Holm, E.R., Stamper, D.M., Brizzolara, R.A., Barnes, L., Deamer, N., & Burkholder, J.A.M., 2008. Sonication of bacteria, phytoplankton and zooplankton: application to treatment of ballast water. Mar. Pollut. Bull. 56(6), 1201-1208. PMid:18343457. http://doi.org/10.1016/j.marpolbul.2008.02.007.

Holz, J.C., & Hoagland, K.D., 1996. Experimental microcosm study of the effects of phosphorus reduction on plankton community structure. Can. J. Fish. Aquat. Sci. 53(8), 1754-1764. http://doi.org/10.1139/f96-104.

Horne, A.J., & Beutel, M., 2019. Hypolimnetic oxygenation 3: an engineered switch from eutrophic to a meso-/oligotrophic state in a California reservoir. Lake Reserv. Manage. 35(3), 338-353. http://doi.org/10.1080/10402381.2019.1648613.

Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M.H., & Visser, P.M., 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16(8), 471-483. PMid:29946124. http://doi.org/10.1038/s41579-018-0040-1.

Jagtman, E., Van der Molen, D.T., & Vermij, S., 1992. The influence of flushing on nutrient dynamics, composition and densities of algae and transparency in Veluwemeer, The Netherlands. Hydrobiologia 233(1–3), 187-196. http://doi.org/10.1007/BF00016107.

Jančula, D., & Marsálek, B., 2011. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85(9), 1415-1422. PMid:21925702. http://doi.org/10.1016/j.chemosphere.2011.08.036.

Jeppesen, E., Søndergaard, M., Lauridsen, T.L., Davidson, T.A., Liu, Z., Mazzeo, N., Trochine, C., Özkan, K., Jensen, H.S., Trolle, D., Starling, F., Lazzaro, X., Johansson, L.S., Bjerring, R., Liboriussen, L., Larsen, S.E., Landkildehus, F., Egemose, S., & Meerhoff, M., 2012. Biomanipulation as a restoration tool to combat eutrophication. recent advances and future challenges. Adv. Ecol. Res. 47(1), 411-488. http://doi.org/10.1016/B978-0-12-398315-2.00006-5.

Jing, L., Bai, S., Li, Y., Peng, Y., Wu, C., Liu, J., Liu, G., Xie, Z., & Yu, G., 2019. Dredging project caused short-term positive effects on lake ecosystem health: a five-year follow-up study at the integrated lake ecosystem level. Sci. Total Environ. 686, 753-763. PMid:31195283. http://doi.org/10.1016/j.scitotenv.2019.05.133.

Jong Lee, T., Nakano, K., & Matsumura, M., 2000. A new method for the rapid evaluation of gas vacuoles regeneration and viability of cyanobacteria by flow cytometry. Biotechnol. Lett. 22(23), 1833-1838. http://doi.org/10.1023/A:1005653124437.

Kardinaal, E., De Haan, M., & Ruiter, H., 2008. Maatregelen ter voorkoming blauwalgen werken onvoldoende. H2O, 41(7), 4-7.

Kirk, K.L., 1991. Suspended clay reduces Daphnia feeding rate: behavioural mechanisms. Freshw. Biol. 25(2), 357-365. http://doi.org/10.1111/j.1365-2427.1991.tb00498.x.

Kirk, K.L., & Gilbert, J.J., 2016. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71(5), 1741-1755. http://doi.org/10.2307/1937582.

Kortmann, R.W., Knoecklein, G.W., & Bonnell, C.H., 1994. Aeration of stratified lakes: theory and practice. Lake Reserv. Manage. 8(2), 99-120. http://doi.org/10.1080/07438149409354463.

Lang, P., Meis, S., Procházková, L., Carvalho, L., Mackay, E.B., Woods, H.J., Pottie, J., Milne, I., Taylor, C., Maberly, S.C., & Spears, B.M., 2016. Phytoplankton community responses in a shallow lake following lanthanum-bentonite application. Water Res. 97, 55-68. PMid:27085846. http://doi.org/10.1016/j.watres.2016.03.018.

Le Jeune, A.H., Charpin, M., Deluchat, V., Briand, J.F., Lenain, J.F., Baudu, M., & Amblard, C., 2006. Effect of copper sulphate treatment on natural phytoplanktonic communities. Aquat. Toxicol. 80(3), 267-280. PMid:17095105. http://doi.org/10.1016/j.aquatox.2006.09.004.

Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., Moatar, F., Pannard, A., Souchu, P., Lefebvre, A., & Pinay, G., 2019. Eutrophication: a new wine in an old bottle? Sci. Total Environ. 651(Pt 1), 1-11. PMid:30223216. http://doi.org/10.1016/j.scitotenv.2018.09.139.

Leoni, B., Morabito, G., Rogora, M., Pollastro, D., Mosello, R., Arisci, S., Forasacco, E., & Garibaldi, L., 2007. Response of planktonic communities to calcium hydroxide addition in a hardwater eutrophic lake: results from a mesocosm experiment. Limnology 8(2), 121-130. http://doi.org/10.1007/s10201-007-0202-8.

Lucena-Silva, D., Molozzi, J., Severiano, J.S., Becker, V., & Lucena Barbosa, J.E., 2019. Removal efficiency of phosphorus, cyanobacteria and cyanotoxins by the “flock & sink” mitigation technique in semi-arid eutrophic waters. Water Res. 159, 262-273. PMid:31102855. http://doi.org/10.1016/j.watres.2019.04.057.

Lucena-Silva, D., Severiano, J.S., Silva, R.D.S., Becker, V., Barbosa, J.E.L., & Molozzi, J., 2022. Impacts of the Floc and Sink technique on the phytoplankton community: a morpho-functional approach in eutrophic reservoir water. J. Environ. Manage. 308, 114626. PMid:35131708. http://doi.org/10.1016/j.jenvman.2022.114626.

Lürling, M., & Tolman, Y., 2010. Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna. Water Res. 44(1), 309-319. PMid:19801159. http://doi.org/10.1016/j.watres.2009.09.034.

Lürling, M., & Faassen, E.J., 2012. Controlling toxic cyanobacteria: effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins. Water Res. 46(5), 1447-1459. PMid:22137447. http://doi.org/10.1016/j.watres.2011.11.008.

Lürling, M., & van Oosterhout, F., 2013. Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia 710(1), 253-263. http://doi.org/10.1007/s10750-012-1141-x.

Lürling, M., Meng, D., & Faassen, E.J., 2014. Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in the cyanobacterium, Microcystis aeruginosa. Toxins 6(12), 3260-3280. PMid:25513892. http://doi.org/10.3390/toxins6123260.

Lürling, M., & van Oosterhout, F., 2014. Effect of selected plant extracts and D- and L-lysine on the cyanobacterium Microcystis aeruginosa. Water 6(6), 1807-1825. http://doi.org/10.3390/w6061807.

Lürling, M., & Tolman, Y., 2014a. Beating the blues: is there any music in fighting cyanobacteria with ultrasound? Water Res. 66, 361-373. PMid:25240117. http://doi.org/10.1016/j.watres.2014.08.043.

Lürling, M., & Tolman, Y., 2014b. Effects of commercially available ultrasound on the zooplankton grazer Daphnia and consequent water greening in laboratory experiments. Water 6(11), 3247-3263. http://doi.org/10.3390/w6113247.

Lürling, M., Mackay, E., Reitzel, K., & Spears, B.M., 2016a. Editorial – A critical perspective on geo-engineering for eutrophication management in lakes. Water Res. 97, 1-10. PMid:27039034. http://doi.org/10.1016/j.watres.2016.03.035.

Lürling, M., Waajen, G., & de Senerpont Domis, L.N., 2016b. Evaluation of several end-of-pipe measures proposed to control cyanobacteria. Aquat. Ecol. 50(3), 499-519. http://doi.org/10.1007/s10452-015-9563-y.

Lürling, M., Waajen, G., Engels, B., & van Oosterhout, F., 2017. Effects of dredging and lanthanum-modified clay on water quality variables in an enclosure study in a hypertrophic pond. Water 9(6), 380. http://doi.org/10.3390/w9060380.

Lürling, M., & Mucci, M., 2020. Mitigating eutrophication nuisance: in-lake measures are becoming inevitable in eutrophic waters in the Netherlands. Hydrobiologia 847(21), 4447-4467. http://doi.org/10.1007/s10750-020-04297-9.

Matthijs, H.C.P., Visser, P.M., Reeze, B., Meeuse, J., Slot, P.C., Wijn, G., Talens, R., & Huisman, J., 2012. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Res. 46(5), 1460-1472. PMid:22112924. http://doi.org/10.1016/j.watres.2011.11.016.

Meester, L., Declerck, S.A.J., & Ger, K.A., 2023. Beyond Daphnia: a plea for a more inclusive and unifying approach to freshwater zooplankton ecology. Hydrobiologia 850, 4693-4703. http://doi.org/10.1007/s10750-023-05217-3.

Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O., 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59, 303-327. PMid:23892224. http://doi.org/10.1016/j.envint.2013.06.013.

Miranda, M., Noyma, N., Pacheco, F.S., Magalhães, L., Pinto, E., Santos, S., Soares, M.F.A., Huszar, V.L., Lürling, M., & Marinho, M.M., 2017. The efficiency of combined coagulant and ballast to remove harmful cyanobacterial blooms in a tropical shallow system. Harmful Algae 65, 27-39. PMid:28526117. http://doi.org/10.1016/j.hal.2017.04.007.

Monicelli, F., Araújo, F., Cunha, K.P.V., Dias, J.D., & Becker, V., 2024. Effects of the Floc & Sink technique on the biomass and composition of phytoplankton morpho-functional groups using natural ballasts. Hydrobiologia 852(12), 3081-3094. http://doi.org/10.1007/s10750-024-05664-6.

Morgan, B., Rate, A.W., & Burton, E.D., 2012. Water chemistry and nutrient release during the resuspension of FeS-rich sediments in a eutrophic estuarine system. Sci. Total Environ. 432, 47-56. PMid:22706184. http://doi.org/10.1016/j.scitotenv.2012.05.065.

Murray-Gulde, C.L., Heatley, J.E., Schwartzman, A.L., & Rodgers Junior, J.H., 2002. Algicidal effectiveness of Clearigate, Cutrine-Plus, and copper sulfate and margins of safety associated with their use. Arch. Environ. Contam. Toxicol. 43(1), 19-27. PMid:12045870. http://doi.org/10.1007/s00244-002-1135-1.

Ni, J., Yu, Y., Feng, W., Yan, Q., Pan, G., Yang, B., Zhang, X., & Li, X., 2010. Impacts of algal blooms removal by chitosan-modified soils on zooplankton community in Taihu Lake, China. J. Environ. Sci. 22(10), 1500-1507. PMid:21235177. http://doi.org/10.1016/S1001-0742(09)60270-9.

Norris, B., & Laws, E.A., 2017. Nutrients and phytoplankton in a shallow, hypereutrophic urban lake: prospects for restoration. Water 9(6), 431. http://doi.org/10.3390/w9060431.

Noyma, N.P., De Magalhães, L., Miranda, M., Mucci, M., Van Oosterhout, F., Huszar, V.L.M., Marinho, M.M., Lima, E.R.A., & Lurling, M., 2017. Coagulant plus ballast technique provides a rapid mitigation of cyanobacterial nuisance. PLoS One 12(6), e0178976. PMid:28598977. http://doi.org/10.1371/journal.pone.0178976.

Núñez, M., & Hurtado, J., 2005. NOTA CIENTÍFICA Bioensayos de toxicidad aguda utilizando Daphnia magna Straus (Cladocera, Daphniidae) desarrollada en medio de cultivo modificado. Rev. Peru. Biol. 12(121), 165-170. http://doi.org/10.15381/rpb.v12i1.2373.

Padisák, J., Soróczki-Pintér, É., & Rezner, Z., 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton - An experimental study. Hydrobiologia 500(1-3), 243-257. http://doi.org/10.1023/A:1024613001147.

Pan, G., Chen, J., & Anderson, D.M., 2011. Modified local sands for the mitigation of harmful algal blooms. Harmful Algae 10(4), 381-387. PMid:28690475. http://doi.org/10.1016/j.hal.2011.01.003.

Pereira, A.C., & Mulligan, C.N., 2023. Practices for eutrophic shallow lake water remediation and restoration: a critical literature review. Water 15(12), 2270. http://doi.org/10.3390/w15122270.

Phillips, G., Kelly, A., Pitt, J.A., Sanderson, R., & Taylor, E., 2005. The recovery of a very shallow eutrophic lake, 20 years after the control of effluent derived phosphorus. Freshw. Biol. 50(10), 1628-1638. http://doi.org/10.1111/j.1365-2427.2005.01434.x.

Purcell, D., Parsons, S.A., & Jefferson, B., 2013. The influence of ultrasound frequency and power, on the algal species Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus and Melosira sp. Environ. Technol. 34(17-20), 2477-2490. PMid:24527608. http://doi.org/10.1080/09593330.2013.773355.

Rajasekhar, P., Fan, L., Nguyen, T., & Roddick, F.A., 2012a. A review of the use of sonication to control cyanobacterial blooms. Water Res. 46(14), 4319-4329. PMid:22727861. http://doi.org/10.1016/j.watres.2012.05.054.

Rajasekhar, P., Fan, L., Nguyen, T., & Roddick, F.A., 2012b. Impact of sonication at 20kHz on Microcystis aeruginosa, Anabaena circinalis and Chlorella sp. Water Res. 46(5), 1473-1481. PMid:22119237. http://doi.org/10.1016/j.watres.2011.11.017.

Rathore, S.S., Chandravanshi, P., Chandravanshi, A., & Jaiswal, K., 2016. Eutrophication: impacts of excess nutrient inputs on aquatic ecosystem. IOSR J. Agric. Vet. Sci. 09(10), 89-96. http://doi.org/10.9790/2380-0910018996.

Reichwaldt, E.S., Zheng, L., Barrington, D.J., & Ghadouani, A., 2012. Acute toxicological response of Daphnia and Moina to hydrogen peroxide. J. Environ. Eng. 138(5), 607-611. http://doi.org/10.1061/(ASCE)EE.1943-7870.0000508.

Ruggiu, D., Morabito, G., Panzani, P., & Pugnetti, A., 2002. Trends and relations among basic phytoplankton characteristics in the course of the long-term oligotrophication of Lake Maggiore (Italy). Entomol. Exp. Appl. 369, 243-257. http://doi.org/10.1023/A:1017058112298.

Ruley, J.E., & Rusch, K.A., 2002. An assessment of long-term post-restoration water quality trends in a shallow, subtropical, urban hypereutrophic lake. Ecol. Eng. 19(4), 265-280. http://doi.org/10.1016/S0925-8574(02)00096-4.

Schumaker, R.J., Funk, W.H., & Moore, B.C., 1993. Zooplankton responses to aluminum sulfate treatment of Newman Lake, Washington. J. Freshwat. Ecol. 8(4), 375-387. http://doi.org/10.1080/02705060.1993.9664876.

Shan, K., Song, L., Chen, W., Li, L., Liu, L., Wu, Y., Jia, Y., Zhou, Q., & Peng, L., 2019. Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes. Harmful Algae 84, 84-94. PMid:31128816. http://doi.org/10.1016/j.hal.2019.02.002.

Shen, X., Zhang, H., He, X., Shi, H., Stephan, C., Jiang, H., Wan, C., & Eichholz, T., 2019. Evaluating the treatment effectiveness of copper-based algaecides on toxic algae Microcystis aeruginosa using single cell-inductively coupled plasma-mass spectrometry. Anal. Bioanal. Chem. 411(21), 5531-5543. PMid:31201458. http://doi.org/10.1007/s00216-019-01933-9.

Silva, M.B., Abrantes, N., Nogueira, V., Gonçalves, F., & Pereira, R., 2016. TiO2 nanoparticles for the remediation of eutrophic shallow freshwater systems: efficiency and impacts on aquatic biota under a microcosm experiment. Aquat. Toxicol. 178, 58-71. PMid:27471045. http://doi.org/10.1016/j.aquatox.2016.07.004.

Sinha, A.K., Eggleton, M.A., & Lochmann, R.T., 2018. An environmentally friendly approach for mitigating cyanobacterial bloom and their toxins in hypereutrophic ponds: potentiality of a newly developed granular hydrogen peroxide-based compound. Sci. Total Environ. 637–638, 524-537. PMid:29754087. http://doi.org/10.1016/j.scitotenv.2018.05.023.

Soares, M.C.S., Huszar, V.L.M., Miranda, M.N., Mello, M.M., Roland, F., & Lurling, M., 2013. Cyanobacterial dominance in Brazil: distribution and environmental preferences. Hydrobiologia 717(1), 1-12. http://doi.org/10.1007/s10750-013-1562-1.

Søndergaard, M., Jeppesen, E., Lauridsen, T.L., Skov, C., Van Nes, E.H., Roijackers, R., Lammens, E., & Portielje, R., 2007. Lake restoration: Successes, failures and long-term effects. J. Appl. Ecol. 44(6), 1095-1105. http://doi.org/10.1111/j.1365-2664.2007.01363.x.

Spencer, D.F., Yeung, H.Y., & Greene, R.W., 1983. Alteration in the zooplankton community of a fly ash treated lake. Hydrobiologia 107(2), 123-130. http://doi.org/10.1007/BF00017427.

Su, Y., Zhang, C., Liu, J., Weng, Y., Li, H., & Zhang, D., 2016. Assessing the impacts of phosphorus inactive clay on phosphorus release control and phytoplankton community structure in eutrophic lakes. Environ. Pollut. 219, 620-630. PMid:27346441. http://doi.org/10.1016/j.envpol.2016.06.029.

Tang, X., Zhang, X., Cao, T., Ni, L., & Xie, P., 2018. Reconstructing clear water state and submersed vegetation on behalf of repeated flocculation with modified soil in an in situ mesocosm experiment in Lake Taihu. Sci. Total Environ. 625, 1433-1445. PMid:29996440. http://doi.org/10.1016/j.scitotenv.2018.01.008.

Thoo, R., Siuda, W., & Jasser, I., 2020. The effects of sodium percarbonate generated free Oxygen on Daphnia-implications for the management of harmful algal blooms. Water 12(5), 1-12. http://doi.org/10.3390/w12051304.

Van de Bund, W.J., & Van Donk, E., 2002. Short-term and long-term effects of zooplanktivorous fish removal in a shallow lake: A synthesis of 15 years of data from Lake Zwemlust. Freshw. Biol. 47(12), 2380-2387. http://doi.org/10.1046/j.1365-2427.2002.01006.x.

Van Duin, E.H.S., Frinking, L.J., Van Schaik, F.H., & Boers, P.C.M., 1998. First results of the restoration of Lake Geerplas. Water Sci. Technol. 37(3), 185-192. http://doi.org/10.2166/wst.1998.0204.

Van Hullebusch, E., Deluchat, V., Chazal, P.M., & Baudu, M., 2002. Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: part I – case of aluminium sulphate. Environ. Pollut. 120(3), 617-626. PMid:12442785. http://doi.org/10.1016/S0269-7491(02)00192-6.

Van Oosterhout, F., & Lürling, M., 2011. Effects of the novel “Flock & Lock” lake restoration technique on Daphnia in Lake Rauwbraken (The Netherlands). J. Plankton Res. 33(2), 255-263. http://doi.org/10.1093/plankt/fbq092.

Van Oosterhout, F., & Lürling, M., 2013. The effect of phosphorus binding clay (Phoslock®) in mitigating cyanobacterial nuisance: A laboratory study on the effects on water quality variables and plankton. Hydrobiologia 710(1), 265-277. http://doi.org/10.1007/s10750-012-1206-x.

Visser, P.M., Ibelings, B.W., Bormans, M., & Huisman, J., 2016. Artificial mixing to control cyanobacterial blooms: a review. Aquat. Ecol. 50(3), 423-441. http://doi.org/10.1007/s10452-015-9537-0.

Waajen, G., Van Oosterhout, F., Douglas, G., & Lürling, M., 2016. Management of eutrophication in Lake De Kuil (The Netherlands) using combined flocculant e Lanthanum modified bentonite treatment. Water Res. 97, 83-95. PMid:26647298. http://doi.org/10.1016/j.watres.2015.11.034.

Weenink, E.F.J., Luimstra, V.M., Schuurmans, J.M., van Herk, M.J., Visser, P.M., & Matthijs, H.C.P., 2015. Combatting cyanobacteria with hydrogen peroxide: A laboratory study on the consequences for phytoplankton community and diversity. Front. Microbiol. 6, 714. PMid:26257710. http://doi.org/10.3389/fmicb.2015.00714.

Yamada-Ferraz, T.M., Sueitt, A.P.E., Oliveira, A.F., Botta, C.M.R., Fadini, P.S., Nascimento, M.R.L., Faria, B.M., & Mozeto, A.A., 2015. Assessment of Phoslock® application in a tropical eutrophic reservoir: an integrated evaluation from laboratory to field experiments. Environ. Tech. Innovat 4, 194-205. http://doi.org/10.1016/j.eti.2015.07.002.

Zhang, G., Zhang, P., Liu, H., & Wang, B., 2006. Ultrasonic damages on cyanobacterial photosynthesis. Ultrason. Sonochem. 13(6), 501-505. PMid:16413996. http://doi.org/10.1016/j.ultsonch.2005.11.001.
 


Submitted date:
21/11/2024

Accepted date:
19/08/2025

Publication date:
23/10/2025

68fa664da953954b112a29a5 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections