Acta Limnologica Brasiliensia
http://www.alb.periodikos.com.br/article/doi/10.1590/S2179-975X11519
Acta Limnologica Brasiliensia
Original Article

Longitudinal patterns in distribution of native and non-native fish species in a regulated temperate Neotropical river

Padrões longitudinais na distribuição de espécies nativas e não-nativas de peixes em um rio Neotropical temperado regulado

Andrea Bertora; Fabián Grosman; Pablo Sanzano; Juan José Rosso

Downloads: 0
Views: 2406

Abstract

Abstract:: Aim: We evaluated the longitudinal patterns in distribution of native and non-native fish species in a hydrologically fragmented and environmentally variable lowland temperate river.

Methods: Four sites representing contrasting habitat and environmental conditions were sampled: a clear water reservoir, a turbid water lagoon and two river reaches with clear and turbid waters each. Environmental variables were measured in situ and in the laboratory. Fishes were sampled using trammel and beach seine nets.

Results: Two main environmental scenarios were identified: the upstream reaches, with colder, clearer and nutrient-oxygen poor waters (reservoir and its downstream river) and the downstream reaches, where turbidity, dissolved oxygen, water temperature, conductivity and nutrients largely increased (lagoon and its downstream river). Fourteen species with a high non-native/native (4:10) ratio were collected. Non-native species (NNS) were confined to lentic conditions, where the silverside Odontesthes bonariensis dominated. Native species (NS) better thrive in lotic conditions where the turbid scenario further favored tolerant species. Environmental conditions also seemed to influence the distribution of NNS. Fish assemblage structure considering either, all species, NNS or NS significantly differed among sampled reaches and habitat (lentic-lotic) conditions. Total fish abundance was higher in lentic reaches. Species richness and diversity were favored by the turbid scenario. Beta diversity was mostly explained by the replacement component revealing the substitution of species as the main pattern of variation. Water conductivity, nitrates and dissolved oxygen were the most important predictor variables in the best and most frequent explanatory models of fish assemblage structures.

Conclusions: Our results revealed that a low diversified Neotropical fish fauna is disrupted by habitat fragmentation due to the creation of artificial impoundments and the introduction of NNS. Environmental conditions further modulate the fish assemblage structure by affecting the distribution of species where tolerant species were favored by turbid, nutrient-rich waters with higher conductivity and pH.

Keywords

reservoir, eutrophication, non-native species, fishes, Sauce Grande river

Resumo

Resumo:: Objetivo: Neste trabalho avaliamos os padrões longitudinais de distribuição de espécies nativas e não-nativas de peixes em um rio de planície fragmentado hidrologicamente e variável limnologicamente.

Métodos: Quatro locais representando condições ambientais e de habitat contrastantes foram amostrados: um reservatório de águas claras, uma lagoa de águas turvas e dois trechos do rio, um de águas claras e outro de águas turvas. As variáveis ambientais foram medidas in situ e no laboratório. Os peixes foram amostrados com redes de arrasto e de espera.

Resultados: Dois cenários ambientais foram identificados. Um à montante, com águas mais frias, claras e pobres em nutrientes e oxigênio dissolvido (o reservatório e o trecho do rio abaixo do mesmo) e outro, à jusante, onde a turbidez, oxigênio dissolvido, temperatura da água, condutividade e os nutrientes aumentaram consideravelmente (a lagoa e o trecho do rio abaixo da mesma). Quatorze espécies com uma alta proporção entre espécies não-nativas e nativas (4/10) foram coletadas. As espécies não-nativas (NNS) estiveram confinadas a condições lênticas, onde o peixe-rei Odontesthes bonariensis dominou as assembleias de peixes. As espécies nativas (NS) proliferaram melhor em condições lóticas onde o cenário de águas turvas favoreceu as espécies tolerantes. As condições ambientais também parecem ter influenciado a distribuição das NNS. A estrutura da assembleia de peixes considerando todas as espécies em conjunto ou NS e NNS em separado, foram significativamente diferentes entre os trechos amostrados e condições de habitat (lêntico-lótico). A abundância total de peixes foi maior em trechos lênticos. A riqueza de espécies e a diversidade foram favorecidas pelo cenário de turbidez. A análise da diversidade beta foi explicada em maior parte pelo turnover revelando a substituição de espécies como o principal padrão de variação. A condutividade elétrica da água, os nitratos e oxigênio dissolvido foram as variáveis preditivas mais importantes nos melhores e mais frequentes modelos explicativos das estruturas da assembleia de peixes.

Conclusões: Nossos resultados revelaram que uma fauna de peixes Neotropicais pouco diversificada é alterada pela fragmentação do habitat devido à construção de barragens e pela introdução de NNS. As condições ambientais modularam ainda mais a estrutura da assembleia de peixes afetando a distribuição de suas espécies onde as espécies tolerantes foram favorecidas por aguas turvas, ricas em nutrientes, com maior condutividade e pH.
 

Palavras-chave

reservatório, eutrofização, espécies introduzidas, peixes, rio Sauce Grande

References

AGOSTINHO, A.A., GOMES, L.C. and PELICICE, F.M. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Maringá: Eduem, 2007.

AGOSTINHO, A.A., GOMES, L.C., SANTOS, N.C., ORTEGA, J.C. and PELICICE, F.M. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research, 2016, 173, 26-36. http://dx.doi.org/10.1016/j.fishres.2015.04.006.

ALLAN, J.D. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics, 2004, 35(1), 257-284. http://dx.doi.org/10.1146/annurev.ecolsys.35.120202.110122.

AMERICAN PUBLIC HEALTH – APHA. American Water Works Association – AWWA. Water Environment Federation – WEF. Standard methods for examination of water and wastewater. Washington: APHA, 2012.

AMUCHÁSTEGUI, G., DI FRANCO, L. and FEIJOÓ, C.S. Catchment morphometric characteristics, land use and water chemistry in Pampean streams: a regional approach. Hydrobiologia, 2016, 767(1), 65-79. http://dx.doi.org/10.1007/s10750-015-2478-8.

ANDERSON, M.J., GORLEY, R.N. and CLARKE, K.R. PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth: PRIMER-E, 2008.

ANSARI, A.A., GILL, S.S. and KHAN, F.A. Eutrophication: threat to aquatic ecosystems. In: ANSARI, A.A., SARVAJEET, S.G., LANZA, G.R. and RAST, W., eds. Eutrophication: causes. consequences and control. Berlin: Springer, 2010, pp. 143-170. http://dx.doi.org/10.1007/978-90-481-9625-8_7

AUTORIDAD DEL AGUA – ADA. Resolución N°395. La Plata: Gobierno de la Provincia de Buenos Aires, 2017.

AUTORIDAD DEL AGUA – ADA. Datos físico-químicos, nutrientes y monitoreo de fitoplancton [online]. La Plata, 2018 [viewed 10 Mar. 2018]. Available from: http://www.ada.gba.gov.ar/institucional/monitoreo.php

BAIGÚN, C.R.M. and QUIRÓS, R. Introducción de peces exóticos en la República Argentina. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero, 1985.

BALDI, G., GUERSCHMAN, J.P. and PARUELO, J.M. Characterizing fragmentation in temperate South America grasslands. Agriculture, Ecosystems & Environment, 2006, 116(3-4), 197-208. http://dx.doi.org/10.1016/j.agee.2006.02.009.

BARKER, D., ALLAN, G.L., ROWLAND, S.J. and PICKLES, J.M. A guide to acceptable procedures and practices for aquaculture and fisheries research. New South Wales: NSW Fisher, 2002.

BASELGA, A. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 2010, 19(1), 134-143. http://dx.doi.org/10.1111/j.1466-8238.2009.00490.x.

BAXTER, R.M. Environmental effects of dams and impoundments. Annual Review of Ecology and Systematics, 1977, 8(1), 255-283. http://dx.doi.org/10.1146/annurev.es.08.110177.001351.

BERTORA, A., GROSMAN, F., SANZANO, P. and ROSSO, J.J. Fish fauna from the Langueyú basin, Argentina: a prairie stream in a heavily modified landscape. Check List, 2018a, 14(2), 461-470. http://dx.doi.org/10.15560/14.2.461.

BERTORA, A., GROSMAN, F., SANZANO, P. and ROSSO, J.J. Composición y estructura de los ensambles de peces en un arroyo pampeano con uso del suelo contrastante. Revista del Museo Argentino de Ciencias Naturales Nueva Serie, 2018b, 20(1), 11-22. http://dx.doi.org/10.22179/REVMACN.20.545.

BEUTEL, M.W. and HORNE, A.J. A review of the effects of hypolimnetic oxygenation on lake and reservoir water quality. Lake and Reservoir Management, 1999, 15(4), 285-297. http://dx.doi.org/10.1080/07438149909354124.

BURNHAM, K.P. and ANDERSON, D.R. Model selection and multimodel inference. New York: Springer, 2002.

BUTCHER, R.W. Studies in the ecology of rivers: VII. The algae of organically enriched waters. Journal of Ecology, 1947, 35(1/2), 186-191. http://dx.doi.org/10.2307/2256507.

CARVALHO, J.C., CARDOSO, P. and GOMES, P. Determining the relative roles of species replacement and species richness differences in generating beta‐diversity patterns. Global Ecology and Biogeography, 2012, 21(7), 760-771. http://dx.doi.org/10.1111/j.1466-8238.2011.00694.x.

CASCIOTTA, J., ALMIRÓN, A., CIONE, A. and AZPELICUETA, M. Brazilian freshwater fish assemblages from southern Pampean area, Argentina. Biogeographica, 1999, 75, 67-78.

CHAMBERS, P.A., DEWREEDE, R.E., IRLANDI, E.A. and VANDERMEULEN, H. Management issues in aquatic macrophyte ecology: a Canadian perspective. Canadian Journal of Botany, 1999, 77(4), 471-487. http://dx.doi.org/10.1139/b99-092.

CLARKE, K.R. and GORLEY, R.N. Getting Started with PRIMER v7. Plymouth: Plymouth Marine Laboratory, 2015.

CLARKE, K.R. and GREEN, R.H. Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series, 1988, 46, 213-226. http://dx.doi.org/10.3354/meps046213.

CLARKE, K.R. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 1993, 18(1), 117-143. http://dx.doi.org/10.1111/j.1442-9993.1993.tb00438.x.

CONY, N.L. Aspectos biológicos, ecológicos y ambientales de la laguna pampeana Sauce Grande y la cuenca media del río de influencia. Bahía Blanca: Universidad Nacional del Sur, 2018.

CORRÊA, F. and PIEDRAS, S.R.N. Alimentação de Cyphocharax voga (Hensel. 1869) (Characiformes. Curimatidae) no arroio Corrientes, Pelotas, Rio Grande do Sul, Brasil. Biotemas, 2013, 21(4), 117-122. http://dx.doi.org/10.5007/2175-7925.2008v21n4p117.

CUCHEROUSSET, J. and OLDEN, J.D. Ecological impacts of nonnative freshwater fishes. Fisheries, 2011, 36(5), 215-230. http://dx.doi.org/10.1080/03632415.2011.574578.

DAGA, V.S., SKÓRA, F., PADIAL, A.A., ABILHOA, V., GUBIANI, É.A. and VITULE, J.R.S. Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia, 2015, 746(1), 327-347. http://dx.doi.org/10.1007/s10750-014-2032-0.

ESTRADA, V., DI MAGGIO, J. and DIAZ, M.S. Water sustainability: a systems engineering approach to restoration of eutrophic Lakes. Computers & Chemical Engineering, 2011, 35(8), 1598-1613. http://dx.doi.org/10.1016/j.compchemeng.2011.03.003.

FEIJOÓ, C.S., GIORGI, A., GARCÍA, M.E. and MOMO, F. Temporal and spatial variability in streams of a pampean basin. Hydrobiologia, 1999, 394, 41-52. http://dx.doi.org/10.1023/A:1003583418401.

FERNÁNDEZ, C., PARODI, E.R. and CÁCERES, E.J. Limnological characteristics and trophic state of Paso de las Piedras Reservoir: an inland reservoir in Argentina. Lakes and Reservoirs: Research and Management, 2009, 14(1), 85-101. http://dx.doi.org/10.1111/j.1440-1770.2009.00393.x.

FIGUEIREDO, B.R., MORMUL, R.P., CHAPMAN, B.B., LOLIS, L.A., FIORI, L.F. and BENEDITO, E. Turbidity amplifies the non‐lethal effects of predation and affects the foraging success of characid fish shoals. Freshwater Biology, 2016, 61(3), 293-300. http://dx.doi.org/10.1111/fwb.12703.

FORNERÓN, C.F., PICCOLO, M.C. and CARBONE, M.E. Análisis morfométrico de la laguna Sauce Grande (Argentina). Huellas, 2010, 14, 11-30.

FREEDMAN, J.A., LORSON, B.D., TAYLOR, R.B., CARLINE, R.F. and STAUFFER JUNIOR, J.R. River of the dammed: longitudinal changes in fish assemblages in response to dams. Hydrobiologia, 2014, 727(1), 19-33. http://dx.doi.org/10.1007/s10750-013-1780-6.

FREITAS TERRA, B. and ARAÚJO, F.G. A preliminary fish assemblage index for a transitional river-reservoir system in southeastern Brazil. Ecological Indicators, 2011, 11(3), 874-881. http://dx.doi.org/10.1016/j.ecolind.2010.11.006.

FRITZ, L.J. Rol del mesozooplancton en la trama trófica pelágica del Embalse Paso de las Piedras: integración en un modelo de restauración de cuerpos de agua eutróficos. Bahía Blanca: Universidad Nacional del Sur, 2018.

GODINHO, A.L., FONSECA, M.T. and ARAÚJO, M.L. The ecology of predator fish introductions: the case of Rio Doce valley lakes. In: R.M. PINTO-COELHO, A. GIANI and E. VON SPERLING, eds. Ecology and human impact on lakes and reservoirs in Minas Gerais with special reference to future development and management strategies. Belo Horizonte: SEGRAC, 1994, pp. 77-83.

GOMES, L.C. and MIRANDA, L.E. Riverine characteristics dictate composition of fish assemblages and limit fisheries in reservoirs of the Upper Parana River Basin. Regulated Rivers: Research and Management, 2001, 17(1), 67-76. http://dx.doi.org/10.1002/1099-1646(200101/02)17:1<67::AID-RRR615>3.0.CO;2-P.

GRANZOTTI, R.V., MIRANDA, L.E., AGOSTINHO, A.A. and GOMES, L.C. Downstream impacts of dams: shifts in benthic invertivorous fish assemblages. Aquatic Sciences, 2018, 80(3), 28. http://dx.doi.org/10.1007/s00027-018-0579-y.

GROSMAN, F., SANZANO, P., BERTORA, A., COLASURSO, V., FRITZ, L., ESTRADA, V. and DI MAGGIO, G. Ictiología del Dique Paso de las Piedras, Provincia de Buenos Aires. Biologia Acuatica, 2017, 32(Suppl.), 75.

GUBIANI, É.A., RUARO, R., RIBEIRO, V.R., EICHELBERGER, A.C.A., BOGONI, R.F., LIRA, A.D., CAVALLI, D., PIANA, P.A. and DA GRAÇA, W.J. Non-native fish species in Neotropical freshwaters: how did they arrive, and where did they come from? Hydrobiologia, 2018, 817(1), 57-69. http://dx.doi.org/10.1007/s10750-018-3617-9.

GUENTHER, C.B. and SPACIE, A. Changes in Fish Assemblage Structure Upstream of Impoundments within the Upper Wabash River Basin. Indiana. Transactions of the American Fisheries Society, 2006, 135(3), 570-583. http://dx.doi.org/10.1577/T05-031.1.

HAN, M., FUKUSHIMA, M., KAMEYAMA, S., FUKUSHIMA, T. and MATSUSHITA, B. How do dams affect freshwater fish distributions in Japan? Statistical analysis of native and nonnative species with various life histories. Ecological Research, 2008, 23(4), 735-743. http://dx.doi.org/10.1007/s11284-007-0432-6.

HUED, A.C. and BISTONI, M.A. Development and validation of a Biotic Index for evaluation of environmental quality in the central region of Argentina. Hydrobiologia, 2005, 543(1), 279-298. http://dx.doi.org/10.1007/s10750-004-7893-1.

INTARTAGLIA, C. and SALA, S.E. Variación estacional del fitoplancton en un lago no estratificado: Embalse Paso de las Piedras, Argentina. Revista Brasileira de Biologia, 1989, 49, 873-882.

JARVIE, H.P., NEAL, C., WILLIAMS, R.J., NEAL, M., WICKHAM, H.D., HILL, L.K., WADE, A.J., WARWICK, A. and WHITE, J. Phosphorus sources, speciation and dynamics in the lowland eutrophic River Kennet, UK. The Science of the Total Environment, 2002, 282-283, 175-203. http://dx.doi.org/10.1016/S0048-9697(01)00951-2. PMid:11846070.

JELLYMAN, P.G. and HARDING, J.S. The role of dams in altering freshwater fish communities in New Zealand. New Zealand Journal of Marine and Freshwater Research, 2012, 46(4), 475-489. http://dx.doi.org/10.1080/00288330.2012.708664.

JESCHKE, J.M. and STRAYER, D.L. Invasion success of vertebrates in Europe and North America. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(20), 7198-7202. http://dx.doi.org/10.1073/pnas.0501271102. PMid:15849267.

JOHNSON, P.T.J., OLDEN, J.D. and VANDER ZANDEN, M.J. Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment, 2008, 6(7), 357-363. http://dx.doi.org/10.1890/070156.

JUNK, W.J., BAYLEY, P.B. and SPARKS, R.E. The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 106(1), 110-127.

LANSAC-TÔHA, F.M., HEINO, J., QUIRINO, B.A., MORESCO, G.A., PELÁEZ, O., MEIRA, B.R., RODRIGES, L.C., JATI, S., LANSAC-TÔHA, F.A. and VELHO, L.F.M. Differently dispersing organism groups show contrasting beta diversity patterns in a dammed subtropical river basin. The Science of the Total Environment, 2019, 691, 1271-1281. http://dx.doi.org/10.1016/j.scitotenv.2019.07.236. PMid:31466207.

LEGENDRE, P. Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography, 2014, 23(11), 1324-1334. http://dx.doi.org/10.1111/geb.12207.

LIEW, J.H., TAN, H.H. and YEO, D.C.J. Dammed rivers: impoundments facilitate fish invasions. Freshwater Biology, 2016, 61(9), 1421. http://dx.doi.org/10.1111/fwb.12781.

LOWE-MCCONNELL, R.H. Fish communities in tropical freshwaters: their distribution, ecology and evolution. London: Longman, 1975.

MACCHI, P.J., PASCUAL, M.A. and VIGLIANO, P.H. Differential piscivory of the native Percichthys trucha and exotic salmonids upon the native forage fish Galaxias maculatus in Patagonian Andean lakes. Limnologica, 2007, 37(1), 76-87. http://dx.doi.org/10.1016/j.limno.2006.09.004.

MAIZTEGUI, T., BAIGÚN, C.R.M., GARCÍA DE SOUZA, J.R., MINOTTI, P. and COLAUTTI, D.C. Invasion status of the common carp Cyprinus carpio in land waters of Argentina. Journal of Fish Biology, 2016, 89(1), 417-430. http://dx.doi.org/10.1111/jfb.13014. PMid:27241358.

MANCINI, M., GROSMAN, F., DYER, B., GARCÍA, G., DEL PONTI, O., SANZANO, P. and SALINAS, V. Pejerreyes del sur de América. Río Cuarto: UniRio, 2016.

MCCARTNEY, M. Living with dams: managing the environmental impacts. Water Policy, 2009, 11(S1), 121-139. http://dx.doi.org/10.2166/wp.2009.108.

ORMEROD, S.J., DOBSON, M., HILDREW, A.G. and TOWNSEND, C. Multiple stressors in freshwater ecosystems. Freshwater Biology, 2010, 55, 1-4. http://dx.doi.org/10.1111/j.1365-2427.2009.02395.x.

ORTEGA, J.C., JÚLIO JÚNIOR, H.F., GOMES, L.C. and AGOSTINHO, A.A. Fish farming as the main driver of fish introductions in Neotropical reservoirs. Hydrobiologia, 2015, 746(1), 147-158. http://dx.doi.org/10.1007/s10750-014-2025-z.

PELÁEZ, O.E., AZEVEDO, F.M. and PAVANELLI, C.S. Environmental heterogeneity explains species turnover but not nestedness in fish assemblages of a Neotropical basin. Acta Limnologica Brasiliensia, 2017, 29(0), e117. http://dx.doi.org/10.1590/s2179-975x8616.

PENCZAK, T. and KRUK, A. Threatened obligatory riverine fishes in human modified Polish rivers. Ecology Freshwater Fish, 2000, 9(1-2), 109-117. http://dx.doi.org/10.1034/j.1600-0633.2000.90113.x.

PERÔNICO, P.B., AGOSTINHO, C.S., FERNANDES, R. and PELICICE, F.M. Community reassembly after river regulation: rapid loss of fish diversity and the emergence of a new state. Hydrobiologia, 2020, 847(2), 519-533. http://dx.doi.org/10.1007/s10750-019-04117-9.

PETRERE, J.R.M. Relationships among catches, fishing effort and river morphology for eight rivers in Amazonas State (Brazil), during 1976-1978. Amazoniana: Limnologia et Oecologia Regionalis Systematis Fluminis Amazonas, 1983, 8(2), 281-296.

PIANA, P.A., GOMES, L.C. and CORTEZ, E.M. Factors influencing Serrapinnus notomelas (Characiformes: Characidae) populations in upper Paraná river floodplain lagoons. Neotropical Ichthyology, 2006, 4(1), 81-86. http://dx.doi.org/10.1590/S1679-62252006000100008.

POUILLY, M. and RODRÍGUEZ, M.A. Determinism of fish assemblage structure in Neotropical floodplain lakes: influence of whole-lake and supra-lake conditions. In: Proceedings of the 2nd International Symposium on the Management of Large Rivers for Fisheries. Rome: FAO, 2004, pp. 243-265.

PYŠEK, P., HULME, P.E., SIMBERLOFF, D., BACHER, S., BLACKBURN, T.M., CARLTON, J.T., DAWSON, W., ESSL, F., FOXCROFT, L.C., GENOVESI, P., JESCHKE, J.M., KÜHN, I., LIEBHOLD, A.M., MANDRAK, N.E., MEYERSON, L.A., PAUCHARD, A., PERGL, J., ROY, H.E., SEEBENS, H., VAN KLEUNEN, M., VILÀ, M., WINGFIELD, M.J. and RICHARDSON, D.M. Scientists’ warning on invasive alien species. Biological Reviews of the Cambridge Philosophical Society, 2020, 95(6), 1511-1534. http://dx.doi.org/10.1111/brv.12627. PMid:32588508.

RINGUELET, R.A. Rasgos Fundamentales de la Zoogeografía Argentina. Physis, 1961, 22(63), 151-170.

RINGUELET, R.A., ARÁMBURU, R.H. and ALONSO DE ARÁMBURU, A. Los peces argentinos de agua dulce. La Plata: Comisión de Investigaciones Científicas, 1967.

ROSENBERG, D.M., BERKES, F., BODALY, R.A., HECKY, R.E., KELLY, C.A. and RUDD, J.W. Large-scale impacts of hydroelectric development. Environmental Reviews, 1997, 5(1), 27-54. http://dx.doi.org/10.1139/a97-001.

ROSSO, J.J. and FERNÁNDEZ CIRELLI, A. Effects of land use on environmental conditions and macrophytes in prairie lotic ecosystems. Limnologica, 2013, 43(1), 18-26. http://dx.doi.org/10.1016/j.limno.2012.06.001.

ROSSO, J.J. and QUIRÓS, R. Interactive effects of abiotic, hydrological and anthropogenic factors on fish abundance and distribution in natural run-of-the-river shallow lakes. River Research and Applications, 2009, 25(6), 713-733. http://dx.doi.org/10.1002/rra.1185.

ROSSO, J.J. Peces pampeanos: guía y ecología. Ciudad Autónoma de Buenos Aires: Literature of Latin America, 2006.

ROSSO, J.J., SOSNOVSKY, A., RENNELLA, A. and QUIRÓS, R. Relationships between fish species abundances and water transparency in hypertrophic turbid waters of temperate shallow lakes. International Review of Hydrobiology, 2010, 95(2), 142-155. http://dx.doi.org/10.1002/iroh.200911187.

SAUNDERS, D.A., HOBBS, R.J. and MARGULES, C.R. Biological consequences of ecosystem fragmentation: a review. Conservation Biology, 1991, 5(1), 18-32. http://dx.doi.org/10.1111/j.1523-1739.1991.tb00384.x.

SAUNDERS, D.L., MEEUWIG, J.J. and VINCENT, A.C.J. Freshwater protected areas: strategies for conservation. Conservation Biology, 2002, 16(1), 30-41. http://dx.doi.org/10.1046/j.1523-1739.2002.99562.x.

SMITH, V.H. and SCHINDLER, D.W. Eutrophication science: where do we go from here? Trends in Ecology & Evolution, 2009, 24(4), 201-207. http://dx.doi.org/10.1016/j.tree.2008.11.009. PMid:19246117.

SMITH, W.S., STEFANI, M.S., ESPÍNDOLA, E.L.G. and ROCHA, O. Changes in fish species composition in the middle and lower Tietê River (São Paulo, Brazil) throughout the centuries, emphasizing rheophilic and introduced species. Acta Limnologica Brasiliensia, 2018, 30(0), e310. http://dx.doi.org/10.1590/s2179-975x0118.

SYMONDS, M.R.E. and MOUSSALLI, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology, 2011, 65(1), 13-21. http://dx.doi.org/10.1007/s00265-010-1037-6.

TENCATT, L.F.C., BRITTO, M.R. and PAVANELLI, C.S. Revisionary study of the armored catfish Corydoras paleatus (Jenyns. 1842) (Siluriformes: Callichthyidae) over 180 years after its discovery by Darwin, with description of a new species. Neotropical Ichthyology, 2016, 14(1), 75-94. http://dx.doi.org/10.1590/1982-0224-20150089.

TURGEON, K., TURPIN, C. and GREGORY‐EAVES, I. Dams have varying impacts on fish communities across latitudes: A quantitative synthesis. Ecology Letters, 2019, 22(9), 1501-1516. http://dx.doi.org/10.1111/ele.13283. PMid:31112010.

VAN DE BUND, W.J. and VAN DONK, E. Short-term and long-term effects of zooplanktivorous fish removal in a shallow lake: a synthesis of 15 years of data from Lake Zwemlust. Freshwater Biology, 2002, 47(12), 2380-2387. http://dx.doi.org/10.1046/j.1365-2427.2002.01006.x.

VANNI, M., BOWLING, A., DICKMAN, E., HALE, R., HIGGINS, K., HORGAN, M., KNOLL, L., RENWICK, W. and STEIN, R. Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology, 2006, 87(7), 1696-1709. http://dx.doi.org/10.1890/0012-9658(2006)87[1696:NCBFSR]2.0.CO;2. PMid:16922320.

VANNOTE, R.L., MINSHALL, G.W., CUMMINS, K.W., SEDELL, J.R. and CUSHING, C.E. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37(1), 130-137. http://dx.doi.org/10.1139/f80-017.

VIGLIZZO, E.F., LÉRTORA, F.A., PORDOMINGO, A.J., BERNARDOS, J.N., ROBERTO, Z.E. and DEL VALLE, H. Ecological lessons and applications from one century of low external-inputfarming in the pampas of Argentina. Agriculture, Ecosystems & Environment, 2001, 83(1-2), 65-81. http://dx.doi.org/10.1016/S0167-8809(00)00155-9.

WARD, J.W. and STANFORD, J.A. Intermediate-disturbance hypothesis: an explanation for biotic diversity patterns in lotic ecosystems. In: T.D. FONTAINE and S.M. BARTELL, eds. Dynamics of lotic systems. Ann Arbor: Ann Arbor Science, 1983, pp. 347-356.

ZAMBRANO, L., PERROW, M.R., MACÍAS-GARCÍA, C. and AGUIRRE-HIDALGO, V. Impact of introduced carp (Cyprinus carpio) in subtropical shallow ponds in Central Mexico. Journal of Aquatic Ecosystem Stress and Recovery, 1998, 6(4), 281-288. http://dx.doi.org/10.1023/A:1009958914016.
 


Submitted date:
12/26/2019

Accepted date:
10/26/2020

Publication date:
04/23/2021

60832377a953951da37bec72 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections