Acta Limnologica Brasiliensia
http://www.alb.periodikos.com.br/article/doi/10.1590/S2179-975X1525
Acta Limnologica Brasiliensia
Review Article

Quantification and analysis of emerging threats studies on freshwater zooplankton (Copepoda, Cladocera and Rotifera) in Brazil from 2014 to 2023

Quantificação e análise de estudos sobre ameaças emergentes no zooplâncton de água doce (Copepoda, Cladocera e Rotifera) no Brasil de 2014 a 2023

Caroline Nogueira Marcelino; Larissa Ferreira Brandão; Caroline de Mello Correia; Amanda Costa Ferreira; Danielle Katharine Petsch; Jorge Laço Portinho

Downloads: 0
Views: 99

Abstract

Aim: This study aimed to quantify and analyze research on emerging threats to freshwater zooplankton (Copepoda, Cladocera, and Rotifera) in Brazil, published between 2014 and 2023. The primary focus was to systematically identify the main environmental stressors studied, knowledge gaps, and methodological trends employed in the research.

Methods: The analysis was conducted through a systematic literature review in the Web of Science, Scopus, and SciELO databases, using specific terms related to zooplankton and emerging threats. Peer-reviewed articles published within the defined period were included. Each study was categorized based on the type of stressor analyzed (e.g., climate change, microplastic pollution, biological invasions), taxonomic groups addressed, and methodological approaches employed, following the PRISMA model.

Results: A total of 176 articles were initially retrieved from the databases, of which 53 met all inclusion criteria and were selected for analysis in this review. Most of these studies focused on multiple zooplankton groups (e.g., Cladocera and Rotifera) and used laboratory experiments or field studies as the primary methodology. The most analyzed stressors were biological invasions (28%) and climate change (24%), followed by harmful algal blooms and emerging contaminants.

Conclusions: The review highlights the need to expand studies on the combined impacts of emerging stressors on zooplankton and to integrate more robust methodologies that better reflect natural conditions.

Keywords

biological invasions; climate change; environmental stressors; aquatic ecosystems; anthropogenic impacts

Resumo

Objetivo: Este estudo teve como objetivo quantificar e analisar as pesquisas sobre ameaças emergentes ao zooplâncton de água doce (Copepoda, Cladocera e Rotifera) no Brasil, publicadas entre 2014 e 2023. O foco principal foi identificar sistematicamente os principais estressores ambientais avaliados, as lacunas de conhecimento e as tendências metodológicas empregadas nos estudos.

Métodos: A análise foi realizada a partir de uma revisão sistemática de literatura nas bases de dados Web of Science, Scopus e SciELO, utilizando termos específicos relacionados à zooplâncton e ameaças emergentes. Foram incluídos artigos publicados em periódicos revisados por pares no período definido. Cada estudo foi categorizado quanto ao tipo de estressor avaliado (mudanças climáticas, poluição por microplásticos, invasões biológicas, entre outros), grupos taxonômicos abordados e abordagens metodológicas utilizadas, seguindo o modelo PRISMA.

Resultados: Foram inicialmente encontrados 176 artigos nas bases de dados, dos quais 53 atenderam a todos os critérios de inclusão e foram considerados relevantes para esta revisão. A maioria desses estudos focou em múltiplos grupos de zooplâncton (e.g., Cladocera e Rotifera) e utilizou experimentos laboratoriais ou estudos de campo como metodologia principal. Os estressores mais analisados foram as invasões biológicas (28%) e a mudança climática (24%), seguidos por eutrofização e contaminantes emergentes.

Conclusões: A revisão destaca a necessidade de ampliar os estudos sobre os impactos combinados de estressores emergentes no zooplâncton e de integrar metodologias mais robustas que reflitam melhor as condições naturais.

Palavras-chave

invasões biológicas; mudanças climáticas; estressores ambientais; ecossistemas aquáticos; impactos antrópicos

Referencias

Akere, T.H., Zigiotto de Medeiros, A.M., Martinez, D.S.T., Ibrahim, B., Ali-Boucetta, H., & Valsami-Jones, E., 2023. Nanotoxicity of graphene oxide: gold nanohybrid to Daphnia magna. Aquat. Toxicol. 260, 106552. PMid:37182271. http://doi.org/10.1016/j.aquatox.2023.106552.

Almeida, L.C., Mattos, A.C., Dinamarco, C.P.G., Figueiredo, N.G., & Bila, D.M., 2021. Chronic toxicity and environmental risk assessment of antivirals in Ceriodaphnia dubia and Raphidocelis subcapitata. Water Sci. Technol. 84(7), 1623-1634. PMid:34662301. http://doi.org/10.2166/wst.2021.347.

Almeida, V.L., Dantas, Ê.W., Melo-Júnior, M.D., Bittencourt-Oliveira, M.D.C., & Moura, A.D.N., 2009. Zooplanktonic community of six reservoirs in northeast Brazil. Braz. J. Biol. 69(1), 57-65. PMid:19347146. http://doi.org/10.1590/S1519-69842009000100007.

Amorim, C.A., Valença, C.R., Moura-Falcão, R.H., & Nascimento Moura, A., 2019. Seasonal variations of morpho-functional phytoplankton groups influence the top-down control of a cladoceran in a tropical hypereutrophic lake. Aquat. Ecol. 53(3), 453-464. http://doi.org/10.1007/s10452-019-09701-8.

Araújo, L.R., Lopes, P.M., Santangelo, J.M., Petry, A.C., & Bozelli, R.L., 2013. Zooplankton resting egg banks in permanent and temporary tropical aquatic systems. Acta Limnol. Bras. 25(3), 235-245. http://doi.org/10.1590/S2179-975X2013000300004.

Arcifa, M.S., 1984. Zooplankton composition of ten reservoirs in southern Brazil. Hydrobiologia 113(1), 137-145. http://doi.org/10.1007/BF00026600.

Aspirault, A., Winkler, G., Jolivet, A., Audet, C., Chauvaud, L., Juanes, F., Olivier, F., & Tremblay, R., 2023. Impact of vessel noise on feeding behavior and growth of zooplanktonic species. Front. Mar. Sci. 10, 1111466. http://doi.org/10.3389/fmars.2023.1111466.

Bertoldi, C., Lara, L.Z., Mizushima, F.A. de L., Martins, F.C.G., Battisti, M.A., Hinrichs, R., & Fernandes, A.N., 2021. First evidence of microplastic contamination in the freshwater of Lake Guaíba, Porto Alegre, Brazil. Sci. Total Environ. 759, 143503. PMid:33218802. http://doi.org/10.1016/j.scitotenv.2020.143503.

Bomfim, F.F., Lansac-Tôha, F.M., Bonecker, C.C., & Lansac-Tôha, F.A., 2021. Determinants of zooplankton functional dissimilarity during years of El Niño and La Niña in floodplain shallow lakes. Aquat. Sci. 83(2), 41. http://doi.org/10.1007/s00027-021-00796-6.

Brazil, T., Caetano, A.C.L., Vargas, A.L., Bozelli, R.L., & Santangelo, J.M., 2022. Desiccation increases the hatching of resting eggs of a freshwater calanoid copepod. J. Plankton Res. 44(2), 273-277. http://doi.org/10.1093/plankt/fbac008.

Breitburg, D.L., Baxter, J.W., Hatfield, C.A., Howarth, R.W., Jones, C.G., Lovett, G.M., & Wigand, C., 1998. Understanding effects of multiple stressors: ideas and challenges. In: Pace, M.L., & Groffman, P.M., eds. Successes, limitations, and frontiers in ecosystem science. New York: Springer, 416-431. http://doi.org/10.1007/978-1-4612-1724-4_17.

Castilho-Noll, M.S.M., Perbiche-Neves, G., Santos, N.G., Schwind, L.T.F., Lansac-Tôha, F.M., Silva, A.C.S., Meira, B.R., Joko, C.Y., Morais-Júnior, C.S., Silva, E.E.C., Eskinazi-Sant’Anna, E.M., Oliveira, F.R., Santos, G.S., Silva, J.V.F., Portinho, J.L., Araujo-Paina, K., Chiarelli, L.J., Diniz, L.P., Braghin, L.S.M., Velho, L.F.M., Souza, M.E.T., Silva, M.L.C., Rocha, M.A., Progênio, M., Ferreira, N., Cirillo, P.H., Morari, P.H.R., Arrieira, R.L., Mantovano, T., Gazulha, V., Melo, V.L.S.A., Ghidini, A.R., Melo Júnior, M., Lansac-Tôha, F.A., Bonecker, C.C., & Simões, N.R., 2023. A review of 121 years of studies on the freshwater zooplankton of Brazil. Limnologica 100, 126057. http://doi.org/10.1016/j.limno.2023.126057.

Castro, G.B., Bernegossi, A.C., Felipe, M.C., & Corbi, J.J., 2020. Is the development of Daphnia magna neonates affected by short-term exposure to polyethylene microplastics? J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 55(8), 935-946. PMid:32362232. http://doi.org/10.1080/10934529.2020.1756656.

Damasceno de Oliveira, L.L., Nunes, B., Antunes, S.C., Campitelli-Ramos, R., & Rocha, O., 2018. Acute and chronic effects of three pharmaceutical drugs on the tropical freshwater Cladoceran Ceriodaphnia silvestrii. Water Air Soil Pollut. 229(4), 116. http://doi.org/10.1007/s11270-018-3765-6.

De-Souza, V.R., Alves-Amorim, C., Moura, A.N., De-Souza, V.R., Alves-Amorim, C., & Moura, A.N., 2021. Effects of the submerged macrophyte Ceratophyllum demersum (Ceratophyllaceae) and the cladoceran Moina micrura (Cladocera: Moinidae) on microalgal interactions. Rev. Biol. Trop. 69(4), 1276-1288. http://doi.org/10.15517/rbt.v69i4.42589.

Diniz, L.P., Petsch, D.K., Mantovano, T., Rodrigues, L.C., Agostinho, A.A., & Bonecker, C.C., 2023. A prolonged drought period reduced temporal β diversity of zooplankton, phytoplankton, and fish metacommunities in a Neotropical floodplain. Hydrobiologia 850(5), 1073-1089. http://doi.org/10.1007/s10750-023-05140-7.

Duchet, C., Grabicová, K., Kolar, V., Lepšová, O., Švecová, H., Csercsa, A., Zdvihalová, B., Randák, T., & Boukal, D.S., 2024. Combined effects of climate warming and pharmaceuticals on a tri-trophic freshwater food web. Water Res. 250, 121053. PMid:38159539. http://doi.org/10.1016/j.watres.2023.121053.

Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.H., Soto, D., Stiassny, M.L., & Sullivan, C.A., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81(2), 163-182. PMid:16336747. http://doi.org/10.1017/S1464793105006950.

Elmoor-Loureiro, L.M.A., Sousa, F.D.R., Oliveira, F.R., Joko, C.Y., Perbiche-Neves, G., Silva, A.C.S., Silva, A.J., Ghidini, A.R., Meira, B.R., Aggio, C.E.G., & Morais-Junior, C.S., 2023. Towards a synthesis of the biodiversity of freshwater Protozoa, Rotifera, Cladocera, and Copepoda in Brazil. Limnologica 100, 126008. http://doi.org/10.1016/j.limno.2022.126008.

Esteves, F.A., 2011. Fundamentos de Limnologia. Rio de Janeiro: Interciência, 3 ed.

Faria, E., Girard, P., Nardes, C.S., Moreschi, A., Christo, S.W., Junior, A.L.F., & Costa, M.F., 2021. Microplastics pollution in the south American pantanal. Case Stud. Chem. Environ. Eng. 3, 100088. http://doi.org/10.1016/j.cscee.2021.100088.

Fernando, C.H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272(1), 105-123. http://doi.org/10.1007/BF00006516.

Freitas, E.C., Rocha, O., & Espíndola, E.L.G., 2018. Effects of florfenicol and oxytetracycline on the tropical cladoceran Ceriodaphnia silvestrii: A mixture toxicity approach to predict the potential risks of antimicrobials for zooplankton. Ecotoxicol. Environ. Saf. 162, 663-672. PMid:30056931. http://doi.org/10.1016/j.ecoenv.2018.06.073.

Garcia, D.A.Z., Orsi, M.L., & Silva-Souza, A.T., 2019. From Africa to Brazil: detection of African Oreochromis niloticus parasites in Brazilian fish farms. Acta Limnol. Bras. 31, e202. http://doi.org/10.1590/s2179-975x6218.

Gebara, R.C., Souza, J.P., Mansano, A.S., Sarmento, H., & Melão, M.D.G.G., 2019. Effects of iron oxide nanoparticles (Fe3O4) on life history and metabolism of the Neotropical cladoceran Ceriodaphnia silvestrii. Ecotoxicol. Environ. Saf. 186, 109743. PMid:31593827. http://doi.org/10.1016/j.ecoenv.2019.109743.

Goussen, B., Rendal, C., Sheffield, D., Butler, E., Price, O.R., & Ashauer, R., 2020. Bioenergetics modelling to analyse and predict the joint effects of multiple stressors: meta-analysis and model corroboration. Sci. Total Environ. 749, 141509. PMid:32827825. http://doi.org/10.1016/j.scitotenv.2020.141509.

Gutierrez, M.F., Andrade, V.S., Flores-Mendez, D.N., Frau, D., Licursi, M., & Negro, L., 2024. The relative importance of salinization in lowland stream zooplankton: implications of the ecosystem nutrient status. Sci. Total Environ. 912, 169240. PMid:38072253. http://doi.org/10.1016/j.scitotenv.2023.169240.

Jeziorski, A., Yan, N.D., Paterson, A.M., DeSellas, A.M., Turner, M.A., Jeffries, D.S., Keller, B., Weeber, R.C., McNicol, D.K., Palmer, M.E., McIver, K., Arseneau, K., Ginn, B.K., Cumming, B.F., & Smol, J.P., 2008. The widespread threat of calcium decline in fresh waters. Science 322(5906), 1374-1377. PMid:19039134. http://doi.org/10.1126/science.1164949.

Leitão, E., Ger, K.A., & Panosso, R., 2018. Selective Grazing by a Tropical Copepod (Notodiaptomus iheringi). Front. Microbiol. 9, 301. PMid:29527199. http://doi.org/10.3389/fmicb.2018.00301.

Leite, L.S., Ogura, A.P., Santos, D.V., Espíndola, E.L.G., & Daniel, L.A., 2022. Acute toxicity of disinfection by-products from chlorination of algal organic matter to the cladocerans Ceriodaphnia silvestrii and Daphnia similis: influence of bromide and quenching agent. Environ. Sci. Pollut. Res. Int. 29(24), 35800-35810. PMid:35061173. http://doi.org/10.1007/s11356-022-18752-8.

Lopes, R.M., Lansac-Tôha, F.A., Vale, R.D., & Serafim-Júnior, M., 1997. Comunidade zooplanctônica do reservatório de Segredo. In: Agostinho, A.A., & Gomes, L.C., eds. Reservatório de Segredo: bases ecológicas para o manejo. Maringá: Eduem, 39-60.

Lucca, G.M., Freitas, E.C., & Melão, M.G.G., 2018. Effects of TiO2 Nanoparticles on the Neotropical Cladoceran Ceriodaphnia silvestrii by waterborne and dietary routes. Water Air Soil Pollut. 229(9), 307. http://doi.org/10.1007/s11270-018-3964-1.

Mansano, A.S., Souza, J.P., Cancino-Bernardi, J., Venturini, F.P., Marangoni, V.S., & Zucolotto, V., 2018. Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques. Environ. Pollut. 243(Pt A), 723-733. PMid:30228063. http://doi.org/10.1016/j.envpol.2018.09.020.

Marengo, J.A., Torres, R.R., & Alves, L.M., 2017. Drought in Northeast Brazil: past, present, and future. Theor. Appl. Climatol. 129(3-4), 1189-1200. http://doi.org/10.1007/s00704-016-1840-8.

McCauley, R.D., Day, R.D., Swadling, K.M., Fitzgibbon, Q.P., Watson, R.A., & Semmens, J.M., 2017. Widely used marine seismic survey air gun operations negatively impact zooplankton. Nat. Ecol. Evol. 1(7), 195. PMid:28812592. http://doi.org/10.1038/s41559-017-0195.

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., & Stewart, L.A., 2015. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4(1), 1-9. PMid:25554246. http://doi.org/10.1186/2046-4053-4-1.

Moore, M.V., Pierce, S.M., Walsh, H.M., Kvalvik, S.K., & Lim, J.D., 2000. Urban light pollution alters the diel vertical migration of Daphnia. SIL Proc. 27(2), 779-782. http://doi.org/10.1080/03680770.1998.11901341.

Nunes, A.H., Miracle, M.R., Dias, J.D., Fabrin, T.M.C., Braghin, L.S.M., & Bonecker, C.C., 2018. First genetic characterization of non-native Daphnia lumholtzi Sars, 1885 in Brazil confirms North American origin. Int. Rev. Hydrobiol. 103(3-4), 48-53. http://doi.org/10.1002/iroh.201701914.

Palazzo, F., Moi, D.A., Mantovano, T., Lansac-Tôha, F.A., & Bonecker, C.C., 2023. Assessment of the occurrence and abundance of an exotic zooplankton species (Kellicottia bostiniensis) across a neotropical wetland over 12 years. Limnology 24(2), 137-149. http://doi.org/10.1007/s10201-022-00712-3.

Pitombeira de Figueirêdo, L., Athayde, D.B., Pinto, T.J. da S., Daam, M.A., Guerra, G. da S., Duarte-Neto, P.J., & Espíndola, E.L.G., 2022. Influence of temperature on the toxicity of the elutriate from a pesticide contaminated soil to two cladoceran species. Ecotoxicology 31(6), 956-966. PMid:35672617. http://doi.org/10.1007/s10646-022-02560-4.

R Development Core Team, 2024. R: a language and environment for statistical computing. Version 4.4.0. Vienna: R Foundation for Statistical Computing.

Rangel, L.M., Ger, K.A., Silva, L.H.S., Soares, M.C.S., Faassen, E.J., & Lürling, M., 2016. Toxicity overrides morphology on Cylindrospermopsis raciborskii grazing resistance to the calanoid copepod Eudiaptomus gracilis. Microb. Ecol. 71(4), 835-844. PMid:26888523. http://doi.org/10.1007/s00248-016-0734-8.

Rangel, L.M., Silva, L.H.S., Faassen, E.J., Lürling, M., & Ger, K.A., 2020. Copepod prey selection and grazing efficiency mediated by chemical and morphological defensive traits of Cyanobacteria. Toxins 12(7), 465. PMid:32708114. http://doi.org/10.3390/toxins12070465.

Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., Johnson, P.T.J., Kidd, K.A., MacCormack, T.J., Olden, J.D., Ormerod, S.J., Smol, J.P., Taylor, W.W., Tockner, K., Vermaire, J.C., Dudgeon, D., & Cooke, S.J., 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. 94(3), 849-873. PMid:30467930. http://doi.org/10.1111/brv.12480.

Rex, M.C., Anand, S., Rai, P.K., & Mukherjee, A., 2023. Engineered nanoparticles (ENPs) in the aquatic environment: an overview of their fate and transformations. Water Air Soil Pollut. 234(7), 462. http://doi.org/10.1007/s11270-023-06488-1.

Rezende, F., Antiqueira, P.A.P., Petchey, O.L., Velho, L.F.M., Rodrigues, L.C., & Romero, G.Q., 2021. Trophic downgrading decreases species asynchrony and community stability regardless of climate warming. Ecol. Lett. 24(12), 2660-2673. PMid:34537987. http://doi.org/10.1111/ele.13885.

Santangelo, J. M., Esteves, F.A., Manca, M., & Bozelli, R.L., 2014. Disturbances due to increased salinity and the resilience of zooplankton communities: the potential role of the resting egg bank. Hydrobiologia 722, 103-113. http://doi.org/10.1007/s10750-013-1683-6.

Sartori, M., Martins, B.A., & Perbiche-Neves, G., 2021. A variação da diversidade de microcrustáceos (Cladocera e Copepoda) a jusante de pequenos reservatórios é influenciada por táxons litorâneos. Iheringia Ser. Zool. 111, e2021004. http://doi.org/10.1590/1678-4766e2021004.

Sauvé, S., & Desrosiers, M., 2014. A review of what is an emerging contaminant. Chem. Cent. J. 8(1), 15. PMid:24572188. http://doi.org/10.1186/1752-153X-8-15.

Scientific Electronic Library Online – SciELO, 2025. Retrieved in 2025, February 26, from https://www.scielo.org

Scopus, 2025. Retrieved in 2025, February 26, from www.scopus.com

Segner, H., Schmitt-Jansen, M., & Sabater, S., 2014. Assessing the impact of multiple stressors on aquatic biota: the receptor’s side matters. Environ. Sci. Technol. 48(14), 7690-7696. PMid:24905720. http://doi.org/10.1021/es405082t.

Severiano, J.D.S., Amaral, C.B., Diniz, A.S., & Moura, A.D.N., 2021. Species-specific response of phytoplankton to zooplankton grazing in tropical eutrophic reservoirs. Acta Limnol. Bras. 33, e17. http://doi.org/10.1590/s2179-975x10719.

Silva, C.O.R., Rangel Junior, A., Perbiche-Neves, G., Pinheiro, A.P., & Lacerda, S.R., 2020. Low zooplankton richness indicating adverse drought and eutrophication conditions in a reservoir in northeastern Brazil. Iheringia Ser. Zool. 110, e2020009. http://doi.org/10.1590/1678-4766e2020009.

Silva, J.V.F., Lansac-Tôha, F.M., Segovia, B.T., Amadeo, F.E., Braghin, L.D.S.M., Velho, L.F.M., Sarmento, H., & Bonecker, C.C., 2022. Experimental evaluation of microplastic consumption by using a size-fractionation approach in the planktonic communities. Sci. Total Environ. 821, 153045. PMid:35033570. http://doi.org/10.1016/j.scitotenv.2022.153045.

Sousa, F.D.R., Palaoro, A.V., Elmoor-Loureiro, L.M.A., & Kotov, A.A., 2017. Predicting the invasive potential of the cladoceran Daphnia lumholtzi Sars, 1885 (Crustacea: Cladocera: Daphniidae) in the Neotropics: are generalists threatened and relicts protected by their life-history traits? J. Limnol. 76(2), 272-280. http://doi.org/10.4081/jlimnol.2016.1571.

Souza, J.P., Mansano, A.S., Venturini, F.P., Marangoni, V.S., Lins, P.M.P., Silva, B.P.C., Dressler, B., & Zucolotto, V., 2021. Toxicity of gold nanorods on Ceriodaphnia dubia and Danio rerio after sub-lethal exposure and recovery. Environ. Sci. Pollut. Res. Int. 28(20), 25316-25326. PMid:33453024. http://doi.org/10.1007/s11356-021-12423-w.

Tałanda, J., Maszczyk, P., Babkiewicz, E., Rutkowska, K., & Ślusarczyk, M., 2022. The short-term effects of planktivorous fish foraging in the presence of artificial light at night on lake zooplankton. J. Plankton Res. 44(6), 942-946. PMid:36447780. http://doi.org/10.1093/plankt/fbac046.

Terrill Sondag, E.E., Stewart Merrill, T.E., Drnevich, J., Holmes, J.R., Fischer, E.K., Cáceres, C.E., & Strickland, L.R., 2023. Differential gene expression in response to fungal pathogen exposure in the aquatic invertebrate, Daphnia dentifera. Ecol. Evol. 13(8), e10354. PMid:37529587. http://doi.org/10.1002/ece3.10354.

Urrutia‐Cordero, P., Langvall, O., Weyhenmeyer, G.A., Hylander, S., Lundgren, M., Papadopoulou, S., Striebel, M., Lind, L., & Langenheder, S., 2024. Cyanobacteria can benefit from freshwater salinization following the collapse of dominant phytoplankton competitors and zooplankton herbivores. Freshw. Biol. 69(12), 1748-1759. http://doi.org/10.1111/fwb.14323.

Vilar, M.C.P., Silva Ferrão-Filho, A., & Azevedo, S.M.F.O., 2022. Single and mixed diets of the toxic Cyanobacteria Microcystis aeruginosa and Raphidiopsis raciborskii differently affect Daphnia feeding behavior. Food Webs 32, e00245. http://doi.org/10.1016/j.fooweb.2022.e00245.

Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R., & Davies, P.M., 2010. Global threats to human water security and river biodiversity. Nature 467(7315), 555-561. PMid:20882010. http://doi.org/10.1038/nature09440.

Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A.D., Winther-Nielsen, M., & Reifferscheid, G., 2014. Microplastics in freshwater ecosystems: what we know and what we need to know. Environ. Sci. Eur. 26(1), 12. PMid:28936382. http://doi.org/10.1186/s12302-014-0012-7.

Web of Science, 2025. Retrieved in 2025, February 26, from www.isiwebofknowledge.com

Zanata, L.H., Espíndola, E.L.G., Rocha, O., & Pereira, R.H.G., 2003. First record of Daphnia lumholtzi (Sars, 1885), exotic cladoceran, in São Paulo State (Brazil). Braz. J. Biol. 63(4), 717-720. PMid:15029383. http://doi.org/10.1590/S1519-69842003000400019.

Zhang, Q.-Y., Ke, F., Gui, L., & Zhao, Z., 2022. Recent insights into aquatic viruses: emerging and reemering pathogens, molecular features, biological effects, and novel investigative approaches. Water Biol. Secur. 1(4), 100062. http://doi.org/10.1016/j.watbs.2022.100062.
 


Submitted date:
26/02/2025

Accepted date:
17/09/2025

Publication date:
07/11/2025

690debbca95395076e4cddf0 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections