Acta Limnologica Brasiliensia
http://www.alb.periodikos.com.br/article/doi/10.1590/S2179-975X4023
Acta Limnologica Brasiliensia
Thematic Section: Methods

Development and field application of a low-cost device for sampling greenhouse gas fluxes at the air-water interface in limnological studies

Desenvolvimento e aplicação de dispositivo de baixo custo para a amostragem de fluxos de gases de efeito estufa na interface ar-água em estudos limnológicos

Lúcia Helena Gomes Coelho; Tatiane do Nascimento Lopes; Tatiane Araujo de Jesus; Roseli Frederigi Benassi

Downloads: 0
Views: 93

Abstract

Aim: The objective of the present study was to develop and field-apply a simple device for sampling greenhouse gas flows (CO2 and CH4) at the air-water interface.

Methods: The device consisted of a cylindrical chamber made of high-density polyethylene with a valve to collect gases. The chamber sealing materials (silicone rubber and epoxy resin) and the system configuration (area/volume ratio A/V, and influence of ventilation) were evaluated. The device was applied in five field campaigns (n = 45). The samples were stored in gasometric containers until analysis by gas chromatography with flame ionization detection.

Results: The epoxy resin sealed the chambers better, while the non-vented device with a higher A/V ratio showed better mixing with fewer uncertainties in gas diffusion through boundary layer disturbance. The flow rates of the target gases varied greatly, from below the limit of quantification for CH4 (< 0.062 mg m-2 min-1) to 0.214 mg m-2 min-1, and from 0.3 to 42.3 mg m-2 min-1 for CO2.

Conclusions: These chambers minimize disturbances to the water body and the natural gas exchange processes obtaining more representative data on the natural emissions. Our floating chamber device proved robustness and versatility for determining gas flows at the air-water interface. However, its use must be evaluated in preliminary field work to define the sampling interval time, uncertainties and main analytical challenges to be overcome.

Keywords

carbon dioxide (CO2); diffusive chamber; GHGs; methane (CH4); wastewater pollution

Resumo

Objetivo: O presente estudo teve por objetivo o desenvolvimento e aplicação em campo de um dispositivo simples para amostragem de fluxos de gases de efeito estufa (CO2 e CH4) na interface ar-água.

Métodos: O dispositivo era composto por uma câmara cilíndrica de polietileno de alta densidade com válvula para coleta dos gases. Foram avaliados os materiais de vedação da câmara (borracha de silicone e resina epóxi) e a configuração do sistema (relação área/volume A/V e influência da ventilação). O dispositivo foi aplicado em cinco campanhas de campo (n = 45). As amostras foram armazenadas em recipientes gasométricos até a análise por cromatografia gasosa com detecção de ionização em chama.

Resultados: A resina epóxi selou melhor as câmaras, enquanto o dispositivo não ventilado e com relação A/V mais alta apresentou melhor mistura com menos incertezas na difusão do gás através da perturbação da camada limite. As taxas de fluxo dos gases alvo variaram muito, desde abaixo do limite de quantificação para CH4 (< 0,062 mg m-2 min-1) a 0,214 mg m-2 min-1, e de 0,3 a 42,3 mg m-2 min-1 para CO2.

Conclusões: Estas câmaras minimizam as perturbações do corpo hídrico e dos processos de troca de gases naturais, obtendo dados mais representativos sobre as emissões naturais. Nosso dispositivo de câmara flutuante mostrou-se robusto e versátil para determinar fluxos de gases na interface ar-água. Entretanto, seu uso deve ser avaliado em trabalhos preliminares de campo para definição do tempo de intervalo de amostragem, incertezas e principais desafios analíticos a serem superados.

Palavras-chave

dióxido de carbono (CO2); câmara difusional; GEE; metano (CH4); poluição por águas residuárias

References

Abril, G., Martinez, J.M., Artigas, L.F., Moreira-Turcq, P., Benedetti, M.F., Vidal, L., Meziane, T., Kim, J.H., Bernardes, M.C., Savoye, N., Deborde, J., Souza, E.L., Albéric, P., Landim de Souza, M.F., & Roland, F., 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505(7483), 395-398. PMid:24336199. http://doi.org/10.1038/nature12797.

Almeida, R.M., Nóbrega, G.N., Junger, P.C., Figueiredo, A.V., Andrade, A.S., Moura, C.G.B., Tonetta, D., Oliveira Junior, E.S., Araújo, F., Rust, F., Piñeiro-Guerra, J.M., Mendonça Junior, J.R., Medeiros, L.R., Pinheiro, L., Miranda, M., Costa, M.R.A., Melo, M.L., Nobre, R.L.G., Benevides, T., Roland, F., de Klein, J., Barros, N.O., Mendonça, R., Becker, V., Huszar, V.L.M., & Kosten, S., 2016. High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir. Front. Microbiol. 7, 717. PMid:27242737. http://doi.org/10.3389/fmicb.2016.00717.

American Society for Testing and Materials – ASTM, 2012. ASTM D6348-12e1: standard test method for determination of gaseous compounds by extractive direct interface Fourier Transform Infrared (FTIR) spectroscopy. West Conshohocken: ASTM International. Retrieved in 2023, December 15, from https://store.astm.org/d6348-12e01.html

Andrady, R.A., 1994. Gas permeability of polymers. In: Andrady, A.L., ed. Plastics and the environment. Hoboken: John Wiley & Sons, 579-595.

Bastviken, D., 2009. Methane. In: Likens, G.E., ed. Encyclopedia of Inland waters. Oxford: Academic Press, 783-805. 1 ed., http://doi.org/10.1016/B978-012370626-3.00117-4.

Bastviken, D., Cole, J., Pace, M., & van de Bogert, M.C., 2008. Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J. Geophys. Res. 113(G2), 2007JG000608. http://doi.org/10.1029/2007JG000608.

Bastviken, D., Cole, J., Pace, M., & Tranvik, L., 2004. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem. Cycles 18(4), 2004GB002238. http://doi.org/10.1029/2004GB002238.

Beaulieu, J.J., DelSontro, T., & Downing, J.A., 2019. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 10(1), 1375. PMid:30914638. http://doi.org/10.1038/s41467-019-09100-5.

Biondo, L.D., Duarte, J., Zeni, M., & Godinho, M., 2018. A dual-mode model interpretation of CO2/CH4 permeability in polysulfone membranes at low pressures. An. Acad. Bras. Cienc. 90(2), 1855-1864. PMid:29898119. http://doi.org/10.1590/0001-3765201820170221.

Borrel, G., Jézéquel, D., Biderre-Petit, C., Morel-Desrosiers, N., Morel, J.P., Peyret, P., Fonty, G., & Lehours, A.C., 2011. Production and consumption of methane in freshwater lake ecosystems. Res. Microbiol. 162(9), 832-847. PMid:21704700. http://doi.org/10.1016/j.resmic.2011.06.004.

Brændholt, A., Steenberg, L.K., Ibrom, A., & Pilegaard, K., 2017. Overestimation of closed-chamber soil CO2 effluxes at low atmospheric turbulence. Biogeosciences 14(6), 1603-1616. http://doi.org/10.5194/bg-14-1603-2017.

Burrows, E.H., Bubier, J.L., Mosedale, A., Cobb, G.W., & Crill, P.M., 2005. Net ecosystem exchange of carbon dioxide in a temperate poor fen: a comparison of automated and manual chamber techniques. Biogeochemistry 76(1), 21-45. http://doi.org/10.1007/s10533-004-6334-6.

Christiansen, J.R., Korhonen, J.F.J., Juszczak, R., Giebels, M., & Pihlatie, M., 2011. Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4 fluxes in a laboratory experiment. Plant Soil 343(1-2), 171-185. http://doi.org/10.1007/s11104-010-0701-y.

Coelho, L.H.G., Jesus, T.A., Kohatsu, M.Y., Poccia, G.T., Chicarolli, V., Helwig, K., Hunter, C.A., Roberts, J., Teedon, P., & Pahl, O., 2020. Estrogenic hormones in São Paulo waters (Brazil) and their relationship with environmental variables and Sinapis alba phytotoxicity. Water Air Soil Pollut. 231(4), 150. http://doi.org/10.1007/s11270-020-04477-2.

Cole, J.B., Bade, D.L., Bastviken, D., Pace, M.L., & van de Bogert, M., 2010. Multiple approaches to estimating air-water gas exchange in small lakes. Limnol. Oceanogr. Methods 8(6), 285-293. http://doi.org/10.4319/lom.2010.8.285.

Davidson, E.A., Savage, K., Verchot, L.V., & Navarro, R., 2002. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 113(1-4), 21-37. http://doi.org/10.1016/S0168-1923(02)00100-4.

Deemer, B.R., Harrison, J.A., Li, S., Beaulieu, J.J., Delsontro, T., Barros, N., Bezerra-Neto, J.F., Powers, S.M., Santos, M.A., & Vonk, J.A., 2016. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66(11), 949-964. PMid:32801383. http://doi.org/10.1093/biosci/biw117.

Di Trapani, D., Di Bella, G., & Viviani, G., 2013. Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slopes. Waste Manag. 33(10), 2108-2115. PMid:23465313. http://doi.org/10.1016/j.wasman.2013.01.032.

Dugan, J.T., Weber, T., & Kessler, J.D., 2024. Development of a fast-response system with integrated calibration for high-resolution mapping of dissolved methane concentration in surface waters. Limnol. Oceanogr. Methods 22(5), 321-332. http://doi.org/10.1002/lom3.10609.

Dumestre, J.F., Guézennec, J., Galy-Lacaux, C., Delmas, R., Richard, S., & Labroue, L., 1999. Influence of light intensity on methanotrophic bacterial activity in Petit Saut Reservoir, French Guiana. Appl. Environ. Microbiol. 65(2), 534-539. PMid:9925579. http://doi.org/10.1128/AEM.65.2.534-539.1999.

Eklund, B., 1992. Practical guidance for flux chamber measurements of fugitive volatile organic emission rates. J. Air Waste Manage. Assoc. 42(12), 1583-1591. http://doi.org/10.1080/10473289.1992.10467102.

Fey, A., & Conrad, R., 2000. Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl. Environ. Microbiol. 66(11), 4790-4797. PMid:11055925. http://doi.org/10.1128/AEM.66.11.4790-4797.2000.

Gebert, J., Rachor, I., Gröngröft, A., & Pfeiffer, E.M., 2011. Temporal variability of soil gas composition in landfill covers. Waste Manag. 31(5), 935-945. PMid:21074982. http://doi.org/10.1016/j.wasman.2010.10.007.

Google Maps, 2024. Retrieved in 2024, July 19, from https://www.google.com/maps

Hu, T., Huang, J., Ding, Y., Sun, Z.R., Xu, M.F., Liu, S.W., Zou, J.W., & Wu, S., 2020. Comparison of floating chamber and diffusion model methods for measuring methane emissions from Inland Fish-Aquaculture Ponds. Huan Jing Ke Xue 41(2), 941-951. PMid:32608756.

Hutchinson, G.L., & Mosier, A.R., 1981. Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci. Soc. Am. J. 45(2), 311-316. http://doi.org/10.2136/sssaj1981.03615995004500020017x.

Hutchinson, G.L., & Livingston, G.P., 2001. Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. Eur. J. Soil Sci. 52(4), 675-682. http://doi.org/10.1046/j.1365-2389.2001.00415.x.

International Organization for Standardization – ISO, 2018. ISO 14064-1:2018: especificação com orientação, a nível de organização, para quantificação e relato de emissões e remoções de gases de efeito estufa. Geneva: ISO, 27 p. Retrieved in 2023, December 15, from https://www.iso.org/standard/66453.html

Jähne, B., & Haußecker, H., 1998. Air-water gas exchange. Annu. Rev. Fluid Mech. 30(1), 443-468. http://doi.org/10.1146/annurev.fluid.30.1.443.

Klenbusch, M.R., 1986. Measurement of gaseous emission rates from land surfaces using an emission isolation flux chamber: user's guide. Las Vegas: U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring Systems Laboratory, Report Number EPA/600/8-86/008; 68-02-3889; EPA-68-02-3889. Retrieved in 2024, July 19, from https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=930013RX.PDF

Kumar, A., Yang, T., & Sharma, M.P., 2019. Greenhouse gas measurement from Chinese freshwater bodies: a review. J. Clean. Prod. 233(1), 368-378. http://doi.org/10.1016/j.jclepro.2019.06.052.

Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H., Shurpali, N.J., Martikainen, P.J., Alm, J., & Wilmking, M., 2007. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences 4(6), 1005-1025. http://doi.org/10.5194/bg-4-1005-2007.

Lai, D.Y.F., Roulet, N.T., Humphreys, E.R., Moore, T.R., & Dalva, M., 2012. The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeosciences 9(8), 3305-3322. http://doi.org/10.5194/bg-9-3305-2012.

Lopes, T.N., Coelho, L.H.G., Mata-Lima, H., Jesus, T.A., Costa, A.C.R., Pereira, J.M.A., & Benassi, R.F., 2022. The influence of pollution sources on CH4 and CO2 emissions in urbanized wetland areas of a tropical reservoir, Southeast, Brazil. J. Environ. Eng. 148(1), 04021071. http://doi.org/10.1061/(ASCE)EE.1943-7870.0001942.

Lucernoni, F., Rizzotto, M., Tapparo, F., Capelli, L., Sironi, S., & Busini, V., 2016. Use of CFD for static sampling hood design: an example for methane flux assessment on landfill surfaces. Chemosphere 163, 259-269. PMid:27540761. http://doi.org/10.1016/j.chemosphere.2016.07.092.

Lucernoni, F., Capelli, L., & Sironi, S., 2017. Comparison of different approaches for the estimation of odour emissions from landfill surfaces. Waste Manag. 63, 345-353. PMid:27769653. http://doi.org/10.1016/j.wasman.2016.09.041.

Mannich, M., Fernandes, C.V.S., & Bleninger, T.B., 2019. Uncertainty analysis of gas flux measurements at air-water interface using floating chambers. Ecohydrol. Hydrobiol. 19(4), 475-486. http://doi.org/10.1016/j.ecohyd.2017.09.002.

Marcelino, A.A., Santos, M.A., Xavier, V.L., Bezerra, C.S., Silva, C.R.O., Amorim, M.A., Rodrigues, R.P., & Rogerio, J.P., 2015. Diffusive emission of methane and carbon dioxide from two hydropower reservoirs in Brazil. Braz. J. Biol. 75(2), 331-338. PMid:26132015. http://doi.org/10.1590/1519-6984.12313.

Martinez-Cruz, K., Sepulveda-Jauregui, A., Anthony, A.W., & Thalasso, F., 2015. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes. Biogeosciences 12(15), 4595-4606. http://doi.org/10.5194/bg-12-4595-2015.

Maxwell, A. S. & Robert, B. C., 2008. Review of data on gas migration through polymer encapsulants. Oxfordshire: Serco Ltd., 1-50, vol. 2. Report SERCO/TAS/000500/001.

Minke, M., Augustin, J., Burlo, A., Yarmashuk, T., Chuvashova, H., Thiele, A., Freibauer, A., Tikhonov, V., & Hoffmann, M., 2016. Water level, vegetation composition, and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation. Biogeosciences 13(13), 3945-3970. http://doi.org/10.5194/bg-13-3945-2016.

Mitsch, W.J., Tejada, J.C., Nahlik, A.M., Kohlmann, B., Bernal, B., & Hernández, C.E., 2008. Tropical wetlands for climate change research, water quality management and conservation education on a university campus in Costa Rica. Ecol. Eng. 34(4), 276-288. http://doi.org/10.1016/j.ecoleng.2008.07.012.

Nahlik, A.M., & Mitsch, W.J., 2011. Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Glob. Change Biol. 17(3), 1321-1334. http://doi.org/10.1111/j.1365-2486.2010.02190.x.

Nishimura, P.Y., Moschini-Carlos, V., Pompêo, M.L.M., Gianessella-Galvão, S.M.F., & Saldanha-Corrêa, F.M.P., 2008. Phytoplankton primary productivity in Rio Grande and Taquacetuba branches (Billings Reservoir, Sao Paulo, Brazil). Int. Ver. Theor. Angew. Limnol. 30(1), 50-52. http://doi.org/10.1080/03680770.2008.11902081.

Prairie, Y., Alm, J., Beaulieu, J., Barros, N., Battin, T., Cole, J., del Giorgio, P., DelSontro, T., Guérin, F., Harby, A., Harrison, J., Mercier-Blais, S., Serça, D., Sobek, S., & Vachon, D., 2018. Greenhouse gas emissions from freshwater reservoirs: what does the atmosphere see? Ecosystems 21(5), 1058-1071. PMid:30607138. http://doi.org/10.1007/s10021-017-0198-9.

Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Yuste, J.C., Grünzweig, J.M., Reth, S., Subke, J.A., Savage, K., Kutsch, W., Østreng, G., Ziegler, W., Anthoni, P., Lindroth, A., & Hari, P., 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric. For. Meteorol. 123(3–4), 159-176. http://doi.org/10.1016/j.agrformet.2003.12.001.

Rachor, I.M., Gebert, J., Gröngröft, A., & Pfeiffer, E.M., 2013. Variability of methane emissions from an old landfill over different time-scales. Eur. J. Soil Sci. 64(1), 16-26. http://doi.org/10.1111/ejss.12004.

Rajkumar, A.N., Barnes, J., Ramesh, R., Purvaja, R., & Upstill-Goddard, R.C., 2008. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Mar. Pollut. Bull. 56(12), 2043-2051. PMid:18814890. http://doi.org/10.1016/j.marpolbul.2008.08.005.

Rosa, L.P., Santos, M.A., Matvienko, B., Santos, E.O., & Sikar, E., 2004. Greenhouse gases emissions by hydroelectric reservoirs in tropical regions. Clim. Change 66(1-2), 9-21. http://doi.org/10.1023/B:CLIM.0000043158.52222.ee.

Scotland Environment Protection Agency – SEPA, 2004. Guidance on the management of landfill gas. Bristol: Environment Agency. Retrieved in 2024, July 19, from https://www.sepa.org.uk/media/28986/guidance-on-the-management-of-landfill-gas.pdf

Teodoru, C.R., Bastien, J., Bonneville, M.-C., del Giorgio, P.A., Demarty, M., Garneau, M., Hélie, J.-F., Pelletier, L., Prairie, Y.T., Roulet, N.T., Strachan, I.B., & Tremblay, A., 2012. The net carbon footprint of a newly created boreal hydroelectric reservoir. Global Biogeochem. Cycles 26(2), 2011GB004187. http://doi.org/10.1029/2011GB004187.

United Nations Educational, Scientific and Cultural Organization – UNESCO. IHA Greenhouse Gas Emissions from Freshwater Reservoirs Research Project. (2010) The Greenhouse Gas measurement guidelines for freshwater reservoirs. London. Retrieved in 2024, July 19, from https://assets-global.website-files.com/5f749e4b9399c80b5e421384/5fa83e0697a884a4f0e30785_GHG%20Measurement%20Guidelines%20for%20Freshwater%20Reservoirs.pdf

Vale, R.S., Santana, R.A., Tóta, J., Miller, S., Souza, R., Branches, R., & Lima, N., 2017. Concentração e fluxo de CO2 sobre o reservatório hidrelétrico de Balbina (AM). Eng. Sanit. Ambient. 22(1), 187-193. http://doi.org/10.1590/s1413-41522017143032.

van Bergen, T.J.H.M., Barros, N., Mendonça, R., Aben, R.C.H., Althuizen, I.H.J., Huszar, V., Lamers, L.P.M., Lürling, M., Roland, F., & Kosten, S., 2019. Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers. Limnol. Oceanogr. 64(5), 2129-2139. http://doi.org/10.1002/lno.11173.

Wengrat, S., & Bicudo, D.C., 2011. Spatial evaluation of water quality in an urban reservoir (Billings Complex, south-eastern Brazil). Acta Limnol. Bras. 23(2), 200-216. http://doi.org/10.1590/S2179-975X2011000200010.

Xing, Y., Xie, P., Yang, H., Ni, L., Wang, Y., & Rong, K., 2005. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmos. Environ. 39(30), 5532-5540. http://doi.org/10.1016/j.atmosenv.2005.06.010.

Yang, Y., Chen, J., Tong, T., Xie, S., & Liu, Y., 2020. Influences of eutrophication on methanogenesis pathways and methanogenic microbial community structures in freshwater lakes. Environ. Pollut. 260, 114106. PMid:32041086. http://doi.org/10.1016/j.envpol.2020.114106.

Yuesi, W., & Yinghong, W., 2003. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Adv. Atmos. Sci. 20(5), 842-844. http://doi.org/10.1007/BF02915410.
 


Submitted date:
04/27/2023

Accepted date:
09/09/2025

Publication date:
11/07/2025

690e17d4a95395261d47bfdb alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections