Acta Limnologica Brasiliensia
http://www.alb.periodikos.com.br/article/doi/10.1590/S2179-975X4124
Acta Limnologica Brasiliensia
Original Article

Morphological variation between two fish populations – phenotypic radiation in a rare case of geographical isolation

Variação morfológica entre duas populações de peixes – radiação fenotípica em um raro caso de isolamento geográfico

Fernanda Biscaino Saluceste; Fábio Teruo Mise; Bruna Angelina Mayer; Franciele Fernanda Kerniske; Roberto Ferreira Artoni; Jean Ricardo Simões Vitule; Letícia Cucolo Karling; Igor de Paiva Affonso

Downloads: 0
Views: 6

Abstract

Aim: We examined the morphology of two populations of the Neotropical Characidae Psalidodon aff. fasciatus from two distinct environments with different selective pressures. One is the single fish population from an isolated lake, hence is deprived of interaction with any other fish species for countless generations. The other shares life-history with several fish.

Methods: We obtained 10 linear body measurements from 294 specimens from both populations, calculated and compared the ecomorphological indices for each population.

Results: We found significant distinct morphometry between populations, primarily attributed to the high level of isolation observed in individuals from the isolated population. This population exhibited greater morphological variation, likely due to reduced selection pressure and limited ecological interactions (e.g., absence of other fish species). Conversely, the non-isolated population displayed less morphological variation, possibly as a result of more intense intra- or interspecific interactions, such as competition and predation.

Conclusions: Considering that allopatry and major factors such as “isolation time” and “ecological interactions” are crucial drivers of evolution, this study highlights a rare case of natural isolation and provides insights for evolutionary investigations on isolated populations, allopatric speciation, and the role of ecological interactions in phenotypic intrapopulation variation.

Keywords

polymorphism; ecotypes; allopatry; interaction; isolation

Resumo

Objetivo: Examinamos a morfologia de duas populações do Characidae Neotropical Psalidodon aff. fasciatus de dois ambientes distintos com diferentes pressões seletivas. Uma é a população única de peixes de um lago isolado, portanto, privada de interação com qualquer outra espécie de peixe por inúmeras gerações. A outra compartilha história de vida com vários peixes.

Métodos: Obtivemos 10 medidas lineares do corpo de 294 espécimes de ambas as populações, calculamos e comparamos os índices ecomorfológicos para cada população.

Resultados: Encontramos morfometria significativamente distinta entre as populações, principalmente atribuída ao alto nível de isolamento observado nos indivíduos da população isolada. Esta população exibiu maior variação morfológica, provavelmente devido à reduzida pressão seletiva e às limitadas interações ecológicas (por exemplo, ausência de outras espécies de peixes). Por outro lado, a população não isolada apresentou menor variação morfológica, possivelmente como resultado de interações intra ou interespecíficas mais intensas, como competição e predação.

Conclusões: Considerando que a alopatria e fatores importantes como “tempo de isolamento” e “interações ecológicas” são impulsionadores cruciais da evolução, este estudo destaca um caso raro de isolamento natural e fornece insights para investigações evolutivas sobre populações isoladas, especiação alopátrica e o papel das interações ecológicas na variação fenotípica intrapopulacional.

Palavras-chave

polimorfismo; ecótipos; alopatria; interação; isolamento

Referencias

Ahti, P.A., Kuparinen, A., & Uusi-Heikkilä, S., 2020. Size does matter: the eco-evolutionary effects of changing body size in fish. Environ. Rev. 28(3), 311-324. http://doi.org/10.1139/er-2019-0076.

Alves, C.B.M., Pompeu, P.S., Mazzoni, R., & Brito, M.F.G., 2021. Avanços em métodos de coleta de peixes e caracterização de habitat de riachos tropicais. Oecol. Aust. 25(2), 246-265. http://doi.org/10.4257/oeco.2021.2502.03.

Anderson, M.J., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62(1), 245-253. PMid:16542252. http://doi.org/10.1111/j.1541-0420.2005.00440.x.

Arribas, R., Touchon, J.C., & Gómez-Mestre, I., 2018. Predation and competition differentially affect the interactions and trophic niches of a neotropical amphibian guild. Front. Ecol. Evol. 6, 28. http://doi.org/10.3389/fevo.2018.00028.

Artoni, R.F., & Almeida Matiello, M.C., 2003. Genética de peixes neotropicais. I. Aspectos da conservação genética dos peixes no Parque Estadual de Vila Velha, Paraná, Brasil. Publ. UEPG Ciênc. Biol. Saúde 9(2), 7-15.

Artoni, R.F., Shibatta, O.A., Gross, M.C., Schneider, C.H., Almeida, M.C.D., Vicari, M.R., & Bertollo, L.A.C., 2006. Astyanax aff. fasciatus Cuvier, 1819 (Teleostei; Characidae): evidências de um complexo de espécies na bacia do alto rio Tibagi (Paraná, Brasil). Neotrop. Ichthyol. 4, 197-202. http://doi.org/10.1590/S1679-62252006000200005.

Baumgartner, G., Pavanelli, C.S., Baumgartner, D., Bifi, A.G., Debona, T., & Frana, V.A., 2012. Peixes do baixo rio Iguaçu. Maringá: Eduem. http://doi.org/10.7476/9788576285861.

Bolnick, D.I., 2004. Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks. Evolution 58(3), 608-618. PMid:15119444. http://doi.org/10.1111/j.0014-3820.2004.tb01683.x.

Bolnick, D.I., Amarasekare, P., Araújo, M.S., Bürger, R., Levine, J.M., Novak, M., & Vasseur, D.A., 2011. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26(4), 183-192. PMid:21367482. http://doi.org/10.1016/j.tree.2011.01.009.

Breda, L., de Oliveira, E.F., & Goulart, E., 2005. Ecomorfologia de locomoção de peixes com enfoque para espécies neotropicais. Acta Sci. Biol. Sci. 27(4), 371-381. http://doi.org/10.4025/actascibiolsci.v27i4.1271.

Campos, J.B., & Dalcomune, M.A., 2011. O Parque Estadual de Vila Velha. In: Carpanezzi, O.T., & Campos, J.B., eds. Coletânea de pesquisas: Parques Estaduais de Vila Velha, Cerrado e Guartelá. Curitiba: Instituto Ambiental do Paraná, 15-22.

De Santis, V., Gutmann Roberts, C., & Britton, J.R., 2021. Trophic consequences of competitive interactions in freshwater fish: density dependent effects and impacts of inter-specific versus intra-specific competition. Freshw. Biol. 66(2), 362-373. http://doi.org/10.1111/fwb.13643.

Freshwater Ecoregions of the World – FEOW, 2023 (Online). Retrieved in 2024, March 29, from https://www.feow.org/

Fricke, R., Eschmeyer, W.N., & van der Laan, R., 2022. Eschmeyer's catalog of fishes: genera, species (Online). Retrieved in 2022, November 16, from http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp

Guimarães, G.B., Melo, M.S., Giannini, P.C.F., & Melek, P.R., 2007. Geologia dos campos gerais. In: Melo, M.S., Moro, R.S., & Guimarães, G.B., eds. Patrimônio natural dos campos gerais do Paraná. Ponta Grossa: UEPG, 23-32, cap. 2.

Hall, A., & Kingsford, M., 2016. Predators exacerbate competitive interactions and dominance hierarchies between two coral reef fishes. PLoS One 11(3), e0151778. PMid:26992169. http://doi.org/10.1371/journal.pone.0151778.

Kaiser, H.F., 1961. A note on Guttman’s lower bound for the number of common factors. Br. J. Stat. Psychol. 14(1), 1-2. http://doi.org/10.1111/j.2044-8317.1961.tb00061.x.

Kerniske, F.F., Castro, J.P., De la Ossa-Guerra, L.E., Mayer, B.A., Abilhoa, V., de Paiva Affonso, I., & Artoni, R.F., 2021. Spinal malformations in a naturally isolated neotropical fish population. PeerJ 9, e12239. PMid:34721968. http://doi.org/10.7717/peerj.12239.

Kerniske, F.F., Ossa-Guerra, L.E.D.L., Dalcin, R.H., Affonso, I.D.P., Artoni, R.F., & Abilhoa, V., 2023. Reproductive aspects of an isolated population of Psalidodon aff. fasciatus (Teleostei: Characidae) from southern Brazil. Acta Limnol. Bras. 35, e24. http://doi.org/10.1590/s2179-975x1023.

Kowalko, J., 2020. Utilizing the blind cavefish Astyanax mexicanus to understand the genetic basis of behavioral evolution. J. Exp. Biol. 223(Suppl 1), jeb208835. PMid:32034044. http://doi.org/10.1242/jeb.208835.

Laliberté, E., Legendre, P., & Shipley, B., 2014. Package ‘FD’: measuring functional diversity from multiple traits, and other tools for functional ecology. Vienna: R Foundation for Statistical Computing.

Lande, R., 1980. Genetic variation and phenotypic evolution during allopatric speciation. Am. Nat. 116(4), 463-479. http://doi.org/10.1086/283642.

Langerhans, R.B., & Makowicz, A.M., 2009. Shared and unique features of morphological differentiation between predator regimes in Gambusia caymanensis. J. Evol. Biol. 22(11), 2231-2242. PMid:20069725. http://doi.org/10.1111/j.1420-9101.2009.01839.x.

Langerhans, R.B., Gifford, M.E., & Joseph, E.O., 2007. Ecological speciation in Gambusia fishes. Evolution 61(9), 2056-2074. PMid:17767582. http://doi.org/10.1111/j.1558-5646.2007.00171.x.

Leroux, N., Sylvain, F.E., Normandeau, E., Holland, A., Val, A.L., & Derome, N., 2022. Evolution of an Amazonian fish is driven by allopatric divergence rather than ecological divergence. Front. Ecol. Evol. 10, 875961. http://doi.org/10.3389/fevo.2022.875961.

Lévêque, C., Oberdorff, T., Paugy, D., Stiassny, M.L.J., & Tedesco, P.A., 2008. Global diversity of fish (Pisces) in freshwater. Hydrobiologia: Freshw. Anim. Divers. Assess. 595, 545-567. http://doi.org/10.1007/s10750-007-9034-0.

Lima, S.L., & Dill, L.M., 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68(4), 619-640. http://doi.org/10.1139/z90-092.

McCune, B., Grace, J.B., & Urban, D.L., 2002. Analysis of ecological communities. Gleneden Beach: MJM Software Design.

Meffe, G.K., 1994. Genetics: conservation of diversity within species. In: Meffe, G.K., Carroll, C.R., eds. Principles of conservation biology.‎ Massachusetts: Sinauer Associates Inc., 237-264.

Melo, M.S., Giannini, P.C.F., 2007. Sandstone dissolution landforms in the Furnas Formation, southern Brazil. Earth Surf. Process. Landf. J. Br. Geomorphological Res. Group 32(14), 2149-2164. http://doi.org/10.1002/esp.1520.

Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro Cunha, E., Smith, T., Stier, A., Te Braak, C., Weedon, J., & Borman, T., 2025. vegan: Community Ecology Package. R package version 2.6-10 (Online). Vienna: R Foundation for Statistical Computing. Retrieved in 2024, March 29, from https://CRAN.R-project.org/package=vegan

Oliveira, E.F., Goulart, E., Breda, L., Minte-Vera, C.V., Paiva, L.R.D.S., & Vismara, M.R., 2010. Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial and phylogenetic structures. Neotrop. Ichthyol. 8(3), 569-586. http://doi.org/10.1590/S1679-62252010000300002.

Pelicice, F.M., Azevedo-Santos, V.M., Esguícero, A.L.H., Agostinho, A.A., & Arcifa, M.S., 2017. Neotropical freshwater fishes imperilled by unsustainable policies. Fish Fish. 18(6), 1119-1133. http://doi.org/10.1111/faf.12228.

Peres-Neto, P.R., 1999. Alguns métodos e estudos em ecomorfologia de peixes de riachos. In: Caramaschi, E.P., Mazzoni, R., & Peres-Neto, P.R., eds. Ecologia de peixes de riachos. Rio de Janeiro: PPGE-UFRJ, 209-236, 1 ed., Série Oecologia Brasiliensis, vol. 6.

Petchey, O.L., & Gaston, K.J., 2002. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5(3), 402-411. http://doi.org/10.1046/j.1461-0248.2002.00339.x.

Poeser, F.N., 1998. The role of character displacement in the speciation of Central American members of the genus Poecilia (Poeciliidae). Ital. J. Zool. 65(S1), 145-147. http://doi.org/10.1080/11250009809386806.

R Core Team, 2024. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Robinson, B.W., & Wilson, D.S., 1994. Character release and displacement in fishes: a neglected literature. Am. Nat. 144(4), 596-627. http://doi.org/10.1086/285696.

Scharnweber, K., Watanabe, K., Syväranta, J., Wanke, T., Monaghan, M.T., & Mehner, T., 2013. Effects of predation pressure and resource use on morphological divergence in omnivorous prey fish. BMC Evol. Biol. 13(1), 132. PMid:23802571. http://doi.org/10.1186/1471-2148-13-132.

Shaw, P.W., Turner, G.F., Rizman Idid, M., Robinson, R.L., & Carvalho, G.R., 2000. Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids. Proc. Biol. Sci. 267(1459), 2273-2280. PMid:11413643. http://doi.org/10.1098/rspb.2000.1279.

Shibatta, O.A., & Artoni, R.F., 2005. Sobre a identidade das populações alopátricas de Astyanax (Characiformes, characidae) das formações furna 1 e furna 2 do parque estadual de Vila Velha, Ponta Grossa, Paraná, Brasil. Publ. UEPG Ci. Biol. Saúde 11(2), 7-12. http://doi.org/10.5212/publicatio%20uepg.v11i2.410.

Sifuentes-Romero, I., Aviles, A.M., Carter, J.L., Chan-Pong, A., Clarke, A., Crotty, P., & Kowalko, J.E., 2023. Trait loss in evolution: what cavefish have taught us about mechanisms underlying eye regression. Integr. Comp. Biol. 63(2), 393-406. PMid:37218721. http://doi.org/10.1093/icb/icad032.

Svanbäck, R., Eklöv, P., Fransson, R., & Holmgren, K., 2008. Intraspecific competition drives multiple species resource polymorphism in fish communities. Oikos 117(1), 114-124. http://doi.org/10.1111/j.2007.0030-1299.16267.x.

Taphorn, D.C., & Lilyestrom, C.G., 1984. Clave para los peces de agua dulce de Venezuela. Rev. Unellez Cienc. Tecnol. 2, 5-30.

Thioulouse, J., Dray, S., Dufour, A.B., Siberchicot, A., Jombart, T., Pavoine, S., & Grill, J., 2018. Multivariate analysis of ecological data with ade4. New York: Springer. http://doi.org/10.1007/978-1-4939-8850-1.

Torres-Dowdall, J., & Meyer, A., 2021. Sympatric and allopatric diversification in the adaptive radiations of Midas cichlids in Nicaraguan lakes. In: Abate, M.E., & Noakes, D.L.G., eds. The behavior, ecology and evolution of cichlid fishes. Dordrecht: Springer, 175-216. http://doi.org/10.1007/978-94-024-2080-7_6.

Winemiller, K.O., 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol. Monogr. 61(4), 343-365. http://doi.org/10.2307/2937046.

Wund, M.A., Baker, J.A., Golub, J.L., & Foster, S.A., 2015. The evolution of antipredator behaviour following relaxed and reversed selection in Alaskan threespine stickleback fish. Anim. Behav. 106, 181-189. PMid:26273106. http://doi.org/10.1016/j.anbehav.2015.05.009.
 


Submitted date:
09/05/2024

Accepted date:
17/06/2025

Publication date:
14/08/2025

689e229fa9539535c47d68ab alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections