Acta Limnologica Brasiliensia
http://www.alb.periodikos.com.br/article/doi/10.1590/S2179-975X5723
Acta Limnologica Brasiliensia
Original Article

Assessing the taxonomic sufficiency of macroinvertebrate communities and their potential to distinguish the impacts of land use on lowland streams in Uruguay

Avaliando a suficiência taxonômica das comunidades de macroinvertebrados e seu potencial para distinguir os impactos do uso da terra em riachos de terras baixas no Uruguai

Bárbara Suárez; Margenny Barrios; Franco Teixeira de Mello

Downloads: 0
Views: 630

Abstract

Aim: Macroinvertebrates are extensively employed as bioindicators for evaluating how stream ecosystems respond to alterations in physical and chemical habitats caused by human activity. Although family-taxonomic level is usually used to identify macroinvertebrates in biomonitoring programs, coarser taxonomic resolution may provide similar information. We aim to evaluate taxonomic sufficiency by comparing macroinvertebrate communities at the order and family levels to differentiate the effects of different land uses.

Methods: We conducted colonization experiments using artificial substrates in streams representing three land use types: urban (U, n=3), intensive agriculture - dairy production (AD, n=4), and extensive cattle ranching (CR, n=4).

Results: We obtained similar results using both taxonomic levels, which effectively distinguished the impacts of different land uses. In the sites examined, the majority of indicator groups exhibited only one family per order, with the exception of Ephemeroptera (Leptophlebiidae, Baetidae, and Caenidae). Notably, Baetidae and Caenidae were more prevalent in streams associated with extensive cattle ranching (CR).

Conclusions: Although this study provides a clear precedent, further investigation of these systems and other land uses (e.g., afforestation) is needed to validate this pattern. Coarser taxonomic assessment holds potential as a cost-effective method for stream monitoring and assessment in Uruguay.

Keywords

order, family, Amphipoda, Littorinimorpha, Ephemeroptera

Resumo

Objetivo: Os macroinvertebrados são amplamente utilizados como bioindicadores para avaliar a forma como os ecossistemas de riachos respondem às alterações dos habitats físicos e químicos causadas pela atividade humana. Embora o nível taxonômico de família seja normalmente utilizado para identificar macroinvertebrados em programas de biomonitoramento, uma resolução taxonômica mais grosseira pode fornecer informações semelhantes. O objetivo é avaliar a suficiência taxonómica, comparando as comunidades de macroinvertebrados ao nível da ordem e da família, para diferenciar os efeitos de diferentes usos do solo.

Métodos: Realizamos experimentos de colonização utilizando substratos artificiais em cursos de água representativos de três tipos de uso do solo: urbano (U, n=3), agricultura intensiva - produção de leite (AD, n=4), e pecuária extensiva (CR, n=4).

Resultados: Obtivemos resultados semelhantes utilizando ambos os níveis taxonômicos, o que permitiu distinguir eficazmente os impactos dos diferentes usos do solo. Nos locais examinados, a maioria dos grupos indicadores apresentava apenas uma família por ordem, com exceção dos Ephemeroptera (Leptophlebiidae, Baetidae e Caenidae). Notavelmente, Baetidae e Caenidae foram mais predominantes em riachos associados à criação extensiva de gado (CR).

Conclusões: Embora este estudo forneça um precedente claro, é necessária uma investigação mais aprofundada destes sistemas e de outras utilizações do solo (por exemplo, reflorestamento) para validar este padrão. A avaliação taxonômica mais grosseira tem potencial para ser um método económico de monitoramento e avaliação de cursos de água no Uruguai.

Palavras-chave

ordem, família, Amphipoda, Littorinimorpha, Ephemeroptera

References

Abell, R., 2002. Conservation biology for the biodiversity crisis: a freshwater follow-up. Conserv. Biol. 16(5), 1435-1437. http://dx.doi.org/10.1046/j.1523-1739.2002.01532.x.

Akamagwuna, F.C. & Odume, O.N., 2020. Ephemeroptera, Plecoptera and Trichoptera (EPT) functional feeding group responses to fine grain sediment stress in a river in the Eastern Cape, South Africa. Environ. Monit. Assess. 192(4), 214. PMid:32140788. http://dx.doi.org/10.1007/s10661-020-8187-4.

Allan, J.D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35(1), 257-284. http://dx.doi.org/10.1146/annurev.ecolsys.35.120202.110122.

Alonso Duré, J.A., 2018. Índice multimétrico basado en macroinvertebrados acuáticos para evaluar la calidad de las aguas en Arroyos del Sur del Departamento de Itapúa [Doctoral dissertation in Environmental Management]. Encarnación: Universidad Nacional de Itapúa [online]. Retrieved in 2022, November 8, from http://hdl.handle.net/20.500.14066/3140

Anderson, M.J., 2011. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26(1), 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x.

Anderson, M.J., 2014. Permutational multivariate analysis of variance (PERMANOVA). In: Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., & Teugels, J.L., eds. Wiley StatsRef: statistics reference online. Hoboken: John Wiley & Sons, 1-15. https://doi.org/10.1002/9781118445112.stat07841.

Arias, M., Scalise, A., Solis, M., Paracampo, A., Indaco, M., Fanelli, S., Mugni, H. & Bonetto, C., 2020. Horticulture affects macroinvertebrate assemblages in adjacent streams (Buenos Aires, Argentina). Knowl. Manag. Aquat. Ecosyst. (421), 5. http://dx.doi.org/10.1051/kmae/2019048.

Arocena, R., 1996. La comunidad bentónica como indicadora de zonas de degradación y recuperación en el arroyo Toledo (Uruguay). Rev. Biol. Trop. 44(2A), 659-671. PMid:9246372.

Bailey, R.C., Norris, R.H. & Reynoldson, T.B., 2001. Taxonomic resolution of benthic macroinvertebrate communities in bioassessments. J. N. Am. Benthol. Soc. 20(2), 280-286. http://dx.doi.org/10.2307/1468322.

Bakker, J.D., 2008. Increasing the utility of indicator species analysis. J. Appl. Ecol. 45(6), 1829-1835. http://dx.doi.org/10.1111/j.1365-2664.2008.01571.x.

Balmford, A., Green, M.J.B. & Murray, M.G., 1996. Using higher-taxon richness as a surrogate for species richness: I. Regional tests. Proc. R. Soc. Lond. B Biol. Sci. 263(1375), 1267-1274. http://dx.doi.org/10.1098/rspb.1996.0186.

Balmford, A., Lyon, J.E. & Lang, R.M., 2000. Testing the higher-taxon approach to conservation planning in a megadiverse group: the macrofungi. Biol. Conserv. 93(2), 209-217. http://dx.doi.org/10.1016/S0006-3207(99)00140-8.

Barrios, M., Tesitore, G., Burwood, M., Suárez, B., Meerhoff, M., Alonso, J., Ríos Touma, B. & Teixeira de Mello, F., 2024. Environmental and aquatic macroinvertebrate metrics respond to the Eucalyptus afforestation gradient in subtropical lowland streams. Hydrobiologia 851(2), 343-365. http://dx.doi.org/10.1007/s10750-023-05248-w.

Benejam, L., Teixeira-de-Mello, F., Meerhoff, M., Loureiro, M., Jeppesen, E. & Brucet, S., 2016. Assessing effects of change in land use on size-related variables of fish in subtropical streams. Can. J. Fish. Aquat. Sci. 73(4), 547-556. http://dx.doi.org/10.1139/cjfas-2015-0025.

Bowman, M.F. & Bailey, R.C., 1997. Does taxonomic resolution affect the multivariate description of the structure of freshwater benthic macroinvertebrate communities? Can. J. Fish. Aquat. Sci. 54(8), 1802-1807. http://dx.doi.org/10.1139/f97-085.

Brooks, S.S. & Boulton, A.J., 1991. Recolonization dynamics of benthic macroinvertebrates after artificial and natural disturbances in an Australian temporary stream. Mar. Freshw. Res. 42(3), 295-308. http://dx.doi.org/10.1071/MF9910295.

Burwood, M., Clemente, J., Meerhoff, M., Iglesias, C., Goyenola, G., Fosalba, C., Pacheco, J.P. & Teixeira de Mello, F., 2021. Macroinvertebrate communities and macrophyte decomposition could be affected by land use intensification in subtropical lowland streams. Limnetica 40(2), 343-357. http://dx.doi.org/10.23818/limn.40.23.

Buss, D.F. & Vitorino, A.S., 2010. Rapid bioassessment protocols using benthic macroinvertebrates in Brazil: evaluation of taxonomic sufficiency. J. N. Am. Benthol. Soc. 29(2), 562-571. http://dx.doi.org/10.1899/09-095.1.

Buss, D.F., Carlisle, D.M., Chon, T.S., Culp, J., Harding, J.S., Keizer-Vlek, H.E., Robinson, W.A., Strachan, S., Thirion, C. & Hughes, R.M., 2015. Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environ. Monit. Assess. 187(1), 4132. PMid:25487459. http://dx.doi.org/10.1007/s10661-014-4132-8.

Casset, M.A., 2013. Aplicación y optimización de índices de estado ecológico en arroyos de la provincia de Buenos Aires [Doctoral dissertation in Biological Sciences]. Buenos Aires: Universidad de Buenos Aires [online]. Retrieved in 2023, February 18, from http://hdl.handle.net/20.500.12110/tesis_n5399_Casset

Castro, M., Capurro, L., Chalar, G. & Arocena, R., 2020. Macroinvertebrados bentónicos indican empeoramiento de la calidad de agua en una zona de influencia urbana en el Río Negro. Bol. Soc. Zool. Urug. 29(2), 116-125.

Chang, F.H., Lawrence, J.E., Rios-Touma, B. & Resh, V.H., 2014. Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions under lying scoring systems worldwide. Environ. Monit. Assess. 186(4), 2135-2149. PMid:24214297. http://dx.doi.org/10.1007/s10661-013-3523-6.

Chen, X., Han, M., Liang, Y., Zhao, W., Wu, Y., Sun, Y., Shao, H., McMinn, A., Zhu, L. & Wang, M., 2022. Progress in ‘taxonomic sufficiency’ in aquatic biological investigations. Mar. Pollut. Bull. 185(Pt A), 114192. PMid:36356341. http://dx.doi.org/10.1016/j.marpolbul.2022.114192.

Chicas, J.M.S., Cervantes, L.S., Springer, M., Cienfuegos, M.R.P., Pérez, D., Flores, A.W.R. & Linares, A.Y.A., 2010. Determinación de la calidad ambiental de las aguas de los ríos de El Salvador, utilizando invertebrados acuáticos: índice biológico a nivel de familias de invertebrados acuáticos en El Salvador (IBF-SV-2010). San Salvador: Ciudad Universitaria.

Cortelezzi, A. & Paz, L.E., 2023. Macroinvertebrate biomonitoring in Latin America: progress and challenges. Freshw. Sci. 42(2), 204-213. http://dx.doi.org/10.1086/724732.

Cortelezzi, A., Barranquero, R.S., Marinelli, C.B., San Juan, M.R.F. & Cepeda, R.E., 2019. Environmental diagnosis of an urban basin from a social-ecological perspective. Sci. Total Environ. 678, 267-277. PMid:31075593. http://dx.doi.org/10.1016/j.scitotenv.2019.04.334.

De Cáceres, M., 2020. How to use the indicspecies package (ver. 1.7.8) [online]. Solsona: Forest Sciences and Technology Center of Catalonia. Retrieved in 2022, May 4, from https://cran.rproject.org/web/packages/indicspecies/vignettes/indicspeciesTutorial.pdf

Death, R.G. & Winterbourn, M.J., 1995. Diversity patterns in stream benthic invertebrate communities: the influence of habitat stability. Ecology 76(5), 1446-1460. http://dx.doi.org/10.2307/1938147.

DeShon, J.E., 1995. Development and application of the invertebrate community index (ICI). In: Davis, W.S. & Simon T.P., eds. Biological assessment and criteria: tools for water resource planning and decision making. Boca Raton: CRC Press, 217-243.

Domínguez, E. & Fernández, H.R., 2009. Macroinvertebrados bentónicos sudamericanos. Sistemática y biología. Tucumán: Fundación Miguel Lillo.

Ellis, D., 1985. Taxonomic sufficiency in pollution assessment. Mar. Pollut. Bull. 16(12), 459. http://dx.doi.org/10.1016/0025-326X(85)90362-5.

Ferrier, S., 2002. Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst. Biol. 51(2), 331-363. PMid:12028736. http://dx.doi.org/10.1080/10635150252899806.

Flowers, R.W., 2009. A new species of Thraulodes (Ephemeroptera: Leptophlebiidae, Atalophlebiinae) from a highly altered river in western Ecuador. Zootaxa 2052(1), 55-61. http://dx.doi.org/10.11646/zootaxa.2052.1.4.

Forero, L.C., Longo, M., Ramírez, J.J.R. & Chalar, G., 2014. Aquatic ecological index based on freshwater (ICERN-MAE) for the Río Negro watershed, Colombia. Rev. Biol. Trop. 62(Suppl 2), 233-247. PMid:25189081. http://dx.doi.org/10.15517/rbt.v62i0.15790.

Furse, M.T., Moss, D., Wright, J.F. & Armitage, P.D., 1984. The influence of seasonal and taxonomic factors on the ordination and classification of running water sites in Great Britain and on the prediction of their macroinvertebrate communities. Freshw. Biol. 14(3), 257-280. http://dx.doi.org/10.1111/j.1365-2427.1984.tb00040.x.

Gaston, K.J., Williams, P.H., Eggleton, P. & Humphries, C.J., 1995. Large scale patterns of biodiversity: spatial variation in family richness. Proc. R. Soc. Lond. B Biol. Sci. 260(1358), 149-154. http://dx.doi.org/10.1098/rspb.1995.0072.

Guerold, F., 2000. Influence of taxonomic determination level on several community indices. Water Res. 34(2), 487-492. http://dx.doi.org/10.1016/S0043-1354(99)00165-7.

Hamada, N., Thorp, J.H. & Rogers, D.C., 2018. Thorp and Covich’s freshwater invertebrates. Volume 3: keys to Neotropical Hexapoda (4th ed.). London: Academic Press.

Hawkins, C.P., Norris, R.H., Hogue, J.N. & Feminella, J.W., 2000. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecol. Appl. 10(5), 1456-1477. http://dx.doi.org/10.1890/1051-0761(2000)010[1456:DAEOPM]2.0.CO;2.

Hentges, S.M., 2019. Estrutura da comunidade de macroinvertebrados aquáticos e avaliação da qualidade da água em riachos da sub-bacia hidrográfica do rio Piratinim, Médio Rio Uruguai, RS, Brasil [Master’s thesis in Environment and Sustainable Technologies]. Cerro Largo: Universidade Federal da Fronteira Sul [online]. Retrieved in 2022, December 20, from https://rd.uffs.edu.br/handle/prefix/3001

Hentges, S.M., Menzel, T.C., Loebens, C.M., Siveris, S.E., Reynalte-Tataje, D.A. & Strieder, M.N., 2021. Structure of aquatic macroinvertebrate communities in streams of a sub-basin in the Pampa Biome, Southern Brazil. Neotrop. Biol. Conserv. 16(2), 249-271. http://dx.doi.org/10.3897/neotropical.16.e60579.

Hewlett, R., 2000. Implications of taxonomic resolution and sample habitat for stream classification at a broad geographic scale. J. N. Am. Benthol. Soc. 19(2), 352-361. http://dx.doi.org/10.2307/1468077.

Hilsenhoff, W.L., 1988. Rapid field assessment of organic pollution with a family level biotic index. J. N. Am. Benthol. Soc. 7(1), 65-68. http://dx.doi.org/10.2307/1467832.

Jones, F.C., 2008. Taxonomic sufficiency: the influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Env. Rev. 16(NA), 45-69. http://dx.doi.org/10.1139/A07-010.

Juárez, I., Crettaz Minaglia, M.C., Gianello, D., Rodriguez, M.S., San Millan, F., Chavez, E., & Juarez, R.A., 2018. Diagnóstico ambiental de la cuenca media-baja del arroyo santa bárbara (Gualeguaychú, Entre Ríos). SIF (Online), 9(1), 46-70. Retrieved in 2022, December 20, from https://revista.uader.edu.ar/index.php/aasif/article/view/116

Karr, J.R. & Chu, E.W., 1999. Restoring life in running waters: better biological monitoring. Washington: Island Press.

Legendre, P., Borcard, D. & Peres-Neto, P., 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr. 75(4), 435-450. http://dx.doi.org/10.1890/05-0549.

Lenat, D.R. & Resh, V.H., 2001. Taxonomy and stream ecology: the benefits of genus-and species-level identifications. J. N. Am. Benthol. Soc. 20(2), 287-298. http://dx.doi.org/10.2307/1468323.

Lento, J., Laske, S.M., Lavoie, I., Bogan, D., Brua, R.B., Campeau, S., Chin, K., Culp, J.M., Levenstein, B., Power, M., Saulnier-Talbot, É., Shaftel, R., Swanson, H., Whitman, M. & Zimmerman, C.E., 2022. Diversity of diatoms, benthic macroinvertebrates, and fish varies in response to different environmental correlates in Arctic rivers across North America. Freshw. Biol. 67(1), 95-115. http://dx.doi.org/10.1111/fwb.13600.

Mary-Lauyé, A.L., González-Bergonzoni, I., Gobel, N., Somma, A., Silva, I. & Lucas, C.M., 2023. Baseline assessment of the hydrological network and land use in riparian buffers of Pampean streams of Uruguay. Environ. Monit. Assess. 195(1), 80. PMid:36342548. http://dx.doi.org/10.1007/s10661-022-10684-7.

Masese, F.O. & Raburu, P.O., 2017. Improving the performance of the EPT Index to accommodate multiple stressors in Afrotropical streams. Afr. J. Aquat. Sci. 42(3), 219-233. http://dx.doi.org/10.2989/16085914.2017.1392282.

Milner, A.M., Loza Vega, E.M., Matthews, T.J., Conn, S.C. & Windsor, F.M., 2023. Long‐term changes in macroinvertebrate communities across high‐latitude streams. Glob. Chang. Biol. 29(9), 2466-2477. PMid:36806834. http://dx.doi.org/10.1111/gcb.16648.

Morley, S.A. & Karr, J.R., 2002. Assessing and restoring the health of urban streams in the Puget Sound Basin. Conserv. Biol. 16(6), 1498-1509. http://dx.doi.org/10.1046/j.1523-1739.2002.01067.x.

Murphy, J.F. & Davy-Bowker, J., 2005. Spatial structure in lotic macroinvertebrate communities in England and Wales: relationships with physicochemical and anthropogenic stress variables. Hydrobiologia 534(1-3), 151-164. http://dx.doi.org/10.1007/s10750-004-1451-8.

Nosad, S., Ganesh, T. & Kiran, L.R., 2021. Efficiency of sampling gears (quadrate and core) and taxonomic resolution on the soft bottom intertidal macrobenthic community of Port Blair coast. Res. J. Chem. Environ. 25(11), 93-103. http://dx.doi.org/10.25303/2511rjce93103.

Oficina de Estadísticas Agropecuarias - DIEA, 2020. Anuario estadístico agropecuario 2020. Estadísticas agropecuarias [online]. Montevideo: Ministerio de Ganadería, Agricultura y Pesca. Retrieved in 2023, May 16, from https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/datos-y-estadisticas/estadisticas/anuario-estadistico-agropecuario-2020

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H. & Oksanen, M.J., 2013. Package ‘vegan.’. Community Ecol. Package 2, 1-295.

Pitacco, V., Reizopoulou, S., Sfriso, A., Sfriso, A., Mistri, M. & Munari, C., 2019. The difficulty of disentangling natural from anthropogenic forcing factors makes the evaluation of ecological quality problematic: a case study from Adriatic lagoons. Mar. Environ. Res. 150, 104756. PMid:31295663. http://dx.doi.org/10.1016/j.marenvres.2019.104756.

Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K. & Hughes, R.M., 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. Washington, DC: Assessment and Water Protection Division/U.S. Environmental Protection Agency.

Queiroz, M.E.F., Schäffer, A.L., Villela, A.C.A.S., Martins e Martins, D.E. & Silva, P.H.T., 2018. Utilização de macroinvertebrados bentônicos como bioindicadores em córrego urbano de Conceição do Araguaia-PA. Sustain. Debate 9(3), 96-110. http://dx.doi.org/10.18472/SustDeb.v9n3.2018.18378.

Quesada-Alvarado, F. & Solano-Ulate, D., 2020. Colonización de macroinvertebrados acuáticos en tres tipos de sustratos artificiales, en un río tropical. Rev. Biol. Trop. 68(Supl. 2), S68-S78. http://dx.doi.org/10.15517/rbt.v68iS2.44339.

Quinn, G.P. & Keough, M.J., 2002. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511806384.

Restello, R.M., Battistoni, D., Sobczak, J.R., Valduga, A.T., Zackrzevski, S.B.B., Zanin, E.M., Decian, V.S. & Hepp, L.U., 2020. Effectiveness of protected areas for the conservation of aquatic invertebrates: a study-case in southern Brazil. Acta Limnol. Bras. 32, e5. http://dx.doi.org/10.1590/s2179-975x9416.

Ricciardi, A. & Rasmussen, J.B., 1999. Extinction rates of North American freshwater fauna. Conserv. Biol. 13(5), 1220-1222. http://dx.doi.org/10.1046/j.1523-1739.1999.98380.x.

Rodrigues Capítulo, A., Tangorra, M. & Ocón, C., 2001. Use of benthic macroinvertebrates to assess the biological status of Pampean streams in Argentina. Aquat. Ecol. 35(2), 109-119. http://dx.doi.org/10.1023/A:1011456916792.

Roldán Pérez, G.A., 2003. Bioindicación de la calidad del agua en Colombia: uso del método BMWP/Col (No. 333.91 R744b). Medellín: Universidad de Antioquia.

Ruellet, T. & Dauvin, J.C., 2007. Benthic indicators: analysis of the threshold values of ecological quality classifications for transitional waters. Mar. Pollut. Bull. 54(11), 1707-1714. PMid:17868743. http://dx.doi.org/10.1016/j.marpolbul.2007.07.003.

Saigo, M., Marchese Garello, M.R. & Montalto, L., 2010. Hábitos alimentarios de Hyalella curvispina Shoemaker, 1942 (Amphipoda: Gammaridea) en ambientes leníticos de la llanura aluvial del río Paraná Medio. Nat. Neotrop. 40(1-2), 43-59.

Segnini, S., 2003. El uso de los macroinvertebrados bentónicos como indicadores de la condición ecológica de los cuerpos de agua corriente. Ecotrópicos 16, 45-63.

Springer, M., 2010. Trichoptera. Rev. Biol. Trop. 58(Suppl. 4), 151-198.

Strayer, D.L., 2006. Challenges for freshwater invertebrate conservation. J. N. Am. Benthol. Soc. 25(2), 271-287. http://dx.doi.org/10.1899/0887-3593(2006)25[271:CFFIC]2.0.CO;2.

Suárez, B., Barrios, M. & Teixeira de Mello, F., 2022. Macroinvertebrates’ response to different land use in lowland streams from Uruguay: use of artificial substrates for biomonitoring. Neotrop. Biodivers. 8(1), 136-146. http://dx.doi.org/10.1080/23766808.2022.2049178.

Suedel, B.C., & Rodgers Junior, J.H., 1994. Development of formulated reference sediments for freshwater and estuarine sediment testing. Environ. Toxicol. Chem. 13(7), 1163-1175. http://dx.doi.org/10.1002/etc.5620130718.

Torremorell, A., Hegoburu, C., Brandimarte, A.L., Rodrigues, E.H.C., Pompêo, M., Silva, S.C., Moschini-Carlos, V., Caputo, L., Fierro, P., Mojica, J.I., Matta, Á.L.P., Donato, J.C., Jiménez-Pardo, P., Molinero, J., Ríos-Touma, B., Goyenola, G., Iglesias, C., López-Rodríguez, A., Meerhoff, M., Pacheco, J.P., Mello, F.T., Rodríguez-Olarte, D., Gómez, M.B., Montoya, J.V., López-Doval, J.C. & Navarro, E., 2021. Current and future threats for ecological quality management of South American freshwater ecosystems. Inland Waters 11(2), 125-140. http://dx.doi.org/10.1080/20442041.2019.1608115.

Waite, I.R., Herlihy, A.T., Larsen, D.P., Urquhart, N.S. & Klemm, D.J., 2004. The effects of macroinvertebrate taxonomic resolution in large landscape bioassessments: an example from the Mid‐Atlantic Highlands, USA. Freshw. Biol. 49(4), 474-489. http://dx.doi.org/10.1111/j.1365-2427.2004.01197.x.

Warwick, R.M., 1988. The level of taxonomic discrimination required to detect pollution effects on marine benthic communities. Mar. Pollut. Bull. 19(6), 259-268. http://dx.doi.org/10.1016/0025-326X(88)90596-6.

Warwick, R.M., 1993. Environmental impact studies on marine communities: pragmatical considerations. Aust. J. Ecol. 18(1), 63-80. http://dx.doi.org/10.1111/j.1442-9993.1993.tb00435.x.

Williams, P.H., Gaston, K.J. & Humphries, C., 1997. Mapping biodiversity value worldwide: combining higher-taxon richness from different groups. Proc. R. Soc. Lond. B Biol. Sci. 264(1378), 141-148. http://dx.doi.org/10.1098/rspb.1997.0021.

Wright, I.A., Chessman, B.C., Fairweather, P.G. & Benson, L.J., 1995. Measuring the impact of sewage effluent on the macroinvertebrate community of an upland stream: the effect of different levels of taxonomic resolution and quantification. Aust. J. Ecol. 20(1), 142-149. http://dx.doi.org/10.1111/j.1442-9993.1995.tb00528.x.
 


Submitted date:
06/23/2023

Accepted date:
01/22/2024

Publication date:
02/08/2024

65c4df69a95395750d56f8f2 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections