Acta Limnologica Brasiliensia
http://www.alb.periodikos.com.br/article/doi/10.1590/S2179-975X7624
Acta Limnologica Brasiliensia
Seção Temática: Métodos

Effects of freezing on the carbon and nitrogen stable isotopic compositions of fish tissues

Efeitos do congelamento nas composições isotópicas estáveis de carbono e nitrogênio nos tecidos de peixes

Luciana Mulero Beloto; Thiago Simon Marques; Barbara Protocevich; Ronnie Von Mateus Ferreira; Plinio Barbosa de Camargo

Downloads: 1
Views: 101

Abstract

Stable isotope analysis is a vital tool for elucidating nutrient flow within food chains. Studies utilizing this methodology must consider potential variables that could influence the δ13C and δ15N values of the species being examined. One such variable is the preservation of samples in a frozen state during field studies, particularly when immediate sample processing is not possible.

Aim: The objective of this study is to investigate the long-term effects of freeze-thaw at intervals of 1, 2, 7, 15, 30, 90 and 180 days on the δ13C, δ15N, and C:N ratios in biological samples from three fish species.

Methods: Tissues from three estuarine fish species (Cathorops spixii, Genidens barbus and Chloroscombrus chrysurus) were frozen and aliquots were subjected to thawing for sample collection aimed at isotopic determination.

Results: The discrepancies observed in this study were related to the δ13C and C:N ratios in the skin samples of C. spixii and G. barbus, as well as the muscle samples of C. chrysurus. These variations seem to be more closely linked to the potential volatility of the 12C isotope within the samples, resulting in δ13C enrichment and an increase in C:N values.

Conclusions: This suggests that these changes are not solely attributable to the freeze-thaw process, but may also be influenced by other factors like the lipid oxidation. Our findings suggest that this process significantly influences the δ13C and C:N ratios of skin and muscle tissues. Furthermore, we advocate for prompt processing of samples to minimize the impacts of freeze-thaw events.

Keywords

marine fish; experiment; preservation of sample; ratios; isotopes

Resumo

A análise de isótopos estáveis é uma ferramenta essencial para elucidar o fluxo de nutrientes nas cadeias alimentares. Estudos que utilizam essa metodologia devem considerar as variáveis potenciais que podem influenciar os valores de δ13C e δ15N das espécies analisadas. Uma dessas variáveis é a preservação das amostras em estado congelado durante os estudos de campo, especialmente quando o processamento imediato das amostras não é possível.


Objetivo: O objetivo deste estudo é investigar os efeitos a longo prazo o congelamento e descongelamento em intervalos de 1, 2, 7, 15, 30, 90 e 180 dias sobre os valores de δ13C, δ15N e as razões C:N em amostras biológicas de três espécies de peixes.

Métodos: Tecidos de três espécies de peixes estuarinos (Cathorops spixii, Genidens barbus e Chloroscombrus chrysurus) foram congelados e alíquotas foram submetidas ao descongelamento para coleta de amostras destinadas à determinação isotópica.

Resultados: As discrepâncias observadas neste estudo estavam relacionadas aos valores de δ13C e às razões C:N nas amostras de pele de C. spixii e G. barbus, bem como nas amostras de músculo de C. chrysurus. Essas variações parecem estar mais fortemente ligadas à potencial volatilidade do isótopo 12C nas amostras, resultando em um enriquecimento de δ13C e um aumento nos valores de C:N.

Conclusões: Isso sugere que essas alterações não são exclusivamente atribuíveis ao processo de congelamento e descongelamento, mas também podem ser influenciadas por outros fatores presentes nas amostras. Nossos resultados indicam que esse processo influencia significativamente os valores de δ13C e as razões C:N nos tecidos de pele e músculo. Além disso, recomendamos o processamento imediato das amostras para minimizar os efeitos do congelamento e descongelamento.

Palavras-chave

peixes marinhos; experimento; preservação de amostras; razões; isótopos

Referências

Arannilewa, S.T., Salawu, S.O., Sorungbe, A.A. & Ola-Salawu, B.B., 2006. Effect of frozen period on the chemical, microbiological and sensory quality of frozen Tilapia fish Sarotherodun galiaenus. Nutr. Health 18(2), 185-192. PMid:16859181. https://doi.org/10.1177/026010600601800210.

Ben-David, M. & Flaherty, E.A., 2012. Theoretical and analytical advances in mammalian isotope ecology: an introduction. J. Mammal., 93(2), 309-311. https://doi.org/10.1644/11-MAMM-S-315.1.

Beneditto, A.P.M.D., Tavares, M.T.M. & Monteiro, L.R., 2018. Isotopic niche of the catfishes Bagre bagre and Genidens barbus in a coastal area of south-eastern Brazil. Biota Neotrop., 18(3), e20180527. https://doi.org/10.1590/1676-0611-bn-2018-0527.

Benjakul, S., Visessanguan, W., Thongkaew, C. & Tanaka, M., 2003. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage. Food Res. Int., 36(8), 787-795. https://doi.org/10.1016/S0963-9969(03)00073-5.

Bosley, K.L. & Wainright, S.C., 1999. Effects of preservatives and acidification on the stable isotope’s ratios (15N:14N, 13C:12C) of two species of marine animals. Can. J. Fish. Aquat. Sci., 77(12), 2181-2185. https://doi.org/10.1139/f99-153.

Bosley, K.L., Witting, D.A., Chambers, R.C. & Wainright, S.C., 2002. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Mar. Ecol. Prog. Ser., 236, 233-240. https://doi.org/10.3354/meps236233.

Cerling, T.E., Wittemyer, G., Rasmussen, H.B., Vollrath, F., Cerling, C.E., Robinson, T.J. & Douglas-Hamilton, I., 2006. Stable isotopes in elephant hair document migration patterns and diet changes. Proc. Natl. Acad. Sci. USA 103(2), 371-373. PMid:16407164. https://doi.org/10.1073/pnas.0509606102.

Cobain, M.R., McGill, R.A. & Trueman, C.N., 2024. Stable isotopes demonstrate seasonally stable benthic‐pelagic coupling as newly fixed nutrients are rapidly transferred through food chains in an estuarine fish community. J. Fish Biol., 105(5), 1406-1420. PMid:35099820. https://doi.org/10.1111/jfb.15005.

Colla, L.M. & Hernandez-Prentice, C., 2003. Congelamento e descongelamento – sua influência sobre os alimentos. Vetor (Online), 13, 53-66. Retrieved in 2024, August 29, from https://periodicos.furg.br/vetor/article/view/428

Dalerum, F. & Angerbjörn, A., 2005. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144(4), 647-658. PMid:16041545. https://doi.org/10.1007/s00442-005-0118-0.

Deniro, M.J. & Epstein, S., 1977. Mechanism of carbon isotope fractionation associated with lipid syntheses. Science 197(4300), 261-263. PMid:327543. https://doi.org/10.1126/science.327543.

Durako, M.J. & Hall, M.O., 1992. Effect of light on the stable carbon isotope composition of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser., 87(1), 99-101. https://doi.org/10.3354/meps086099.

Farquhar, G.D., Ehleringer, J.R. & Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 40(1), 503-537. https://doi.org/10.1146/annurev.pp.40.060189.002443.

Feuchtmayr, H. & Grey, J., 2003. Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determination from zooplankton. Rapid Commun. Mass Spectrom., 17(23), 2605-2610. PMid:14648896. https://doi.org/10.1002/rcm.1227.

Fouda, M.M., 1979. Studies on scale structure in the common goby Pomatoschistus microps Krøyer. J. Fish Biol., 15(2), 173-183. https://doi.org/10.1111/j.1095-8649.1979.tb03581.x.

Freire, K.M.F., Almeida, Z.S., Amador, J.R.E.T., Aragão, J.A., Araújo, A.R.R., Ávila-da-Silva, A.O., Bentes, B., Carneiro, M.H., Chiquieri, J., Fernandes, C.A.F., Figueiredo, M.B., Hostim-Silva, M., Jimenez, É.A., Keunecke, K.A., Lopes, P.F.M., Mendonça, J.T., Musiello-Fernandes, J., Olavo, G., Primitivo, C., Rotundo, M.M., Santana, R.F., Sant’Ana, R., Scheidt, G., Silva, L.M.A., Trindade-Santos, I., Velasco, G. & Vianna, M., 2021. Reconstruction of marine commercial landings for the Brazilian industrial and artisanal fisheries from 1950 to 2015. Front. Mar. Sci., 8, 659110. https://doi.org/10.3389/fmars.2021.659110.

Fry, B., 2006. Stable isotope ecology. Springer Sci., 521, 308. https://doi.org/10.1007/0-387-33745-8.

Grice, A.M., Loneragan, N.R. & Dennison, W.C., 1996. Light intensity and the interaction between physiology, morphology, and stable isotope ratios in five species of seagrass. J. Exp. Mar. Biol. Ecol., 195(1), 91-110. https://doi.org/10.1016/0022-0981(95)00096-8.

Gurgel, H.D., Souza, D.D. & Albuquerque, C.Q., 2004. Alimentação de Cathorops spixii (Agassiz, 1829) (Pisces, Ariidae) do estuário do rio Potengí, Natal, Rio Grande do Norte. Arq. Fundacao Apadec 8(2), 9-11. https://doi.org/10.4025/arqmudi.v8i2.20590.

Hemminga, M.A. & Mateo, M.A., 1996. Stable carbon isotopes in seagrass: variability in ratios and use in ecological studies. Mar. Ecol. Prog. Ser., 140, 285-298. https://doi.org/10.3354/meps140285.

Kolakowska, A., Olley, J. & Dunstan, G.A., 2002. Fish lipids. In Sikorski, Z.E., & Kolakowska, A., eds. Chemical and functional properties of food lipids. Boca Raton: CRC Press, 221-264.

Layman, C.A., Araujo, M.S., Boucek, R., Peyer, C.M., Hammerschlag, N., Harrison, E., Jud, Z.R., Matuch, P., Rosenblatt, A.E., Vando, J.J., Yeager, L.A., Post, D.M. & Bearhop, S., 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. Camb. Philos. Soc., 87(3), 545-562. PMid:22051097. https://doi.org/10.1111/j.1469-185X.2011.00208.x.

Lecea, A.M., Smit, A.J. & Fennessy, S.T., 2011. The effects of freeze/thaw periods and drying methods on isotopic and elemental carbon and nitrogen in marine organisms, raising questions on sample preparation. Rapid Commun. Mass Spectrom., 25(23), 3640-3649. PMid:22095513. https://doi.org/10.1002/rcm.5265.

Lee-Thorp, J., Sealy, J.C. & Van Der Merwe, N.J., 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci., 16(6), 585-599. https://doi.org/10.1016/0305-4403(89)90024-1.

Magnusson, W.E., Araújo, M.C., Cintra, R., Lima, A.P., Martinelli, L.A., Sanaiotti, T.M., Vasconcelos, H.L. & Victoria, R.L., 1999. Contributions of C3 and C4 plants to higher trophic levels in an Amazonian savanna. Oecologia 119(1), 91-96. PMid:28308164. https://doi.org/10.1007/PL00008821.

Maqsood, S. & Benjakul, S., 2011. Retardation of haemoglobin–mediated lipid oxidation of Asian sea bass muscle by tannic acid during ice storage. Food Chem. 124(4), 1056-1062. https://doi.org/10.1016/j.foodchem.2010.07.077.

Marceniuk, A.P. & Ferraris Junior, C.J., 2003. Ariidae (Sea catfishes). In Reis, R.E., Kullander, S.O. & Ferraris Junior, C.J., eds. Checklist of the freshwater fishes of South and Central America. Porto Alegre: EDIPUCRS, 447-455. https://doi.org/10.1111/j.0022-1112.2004.00504c.x.

Martinez Del Rio, C., Wolf, N., Carleton, S.A. & Gannes, L.Z., 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev. Camb. Philos. Soc., 84(1), 91-111. PMid:19046398. https://doi.org/10.1111/j.1469-185X.2008.00064.x.

Mhande, Z., Mihale, M.J., Hellar-Kihampa, H., Brion, N. & Baeyens, W., 2025. Deciphering the carbon and nitrogen cycling in selected tropical coastal fish: revelations from stable isotope fluctuations and feeding patterns. Environ. Monit. Assess., 197(3), 237. PMid:39904889. https://doi.org/10.1007/s10661-025-13625-2.

Minagawa, M. & Wada, E., 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48(5), 1135-1140. https://doi.org/10.1016/0016-7037(84)90204-7.

Monson, K.D. & Hayes, J.M., 1992. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolyses of unsaturated fatty acids as a means of determining the intramolecular distribution on carbon isotopes. Geochim. Cosmochim. Acta 46(2), 139-149. https://doi.org/10.1016/0016-7037(82)90241-1.

Newsome, S.D., Martinez Del Rio, C., Bearhop, S. & Phillips, D.L., 2007. A niche for isotope ecology. Front. Ecol. Environ., 5(8), 429-436. https://doi.org/10.1890/1540-9295(2007)5[429:ANFIE]2.0.CO;2.

Parker, P.L., 1964. The biogeochemistry of the stable isotopes of carbon in marine bay. Geochim. Cosmochim. Acta 28(11), 1155-1164. https://doi.org/10.1016/0016-7037(64)90067-5.

Ramos, R. & González-Solís, J., 2012. Trace me if you can: the use of intrinsic biogeochemical markers in marine top predators. Front. Ecol. Environ., 10(5), 258-266. https://doi.org/10.1890/110140.

Riera, P. & Richard, P., 1997. Temporal variation of δ13C in particulate organic matter and oyster Crassostrea gigas in Marennes-Oléron Bay (France): effect of freshwater inflow. Mar. Ecol. Prog. Ser., 147, 105-115. https://doi.org/10.3354/meps147105.

Silva, F.A.M., Borges, M.F.M. & Ferreira, M.A., 1999. Métodos para avaliação do grau de oxidação lipídica e da capacidade antioxidante. Quim. Nova 22(1), 94-103. https://doi.org/10.1590/S0100-40421999000100016.

Silva, J.T.A. & Lopes, P.R.D., 2002. Notas sobre a alimentação e morfologia do aparelho digestivo de Chloroscombrus chrysurus (Linnaeus, 1766) (Actinopterygii, Carangidae) na Praia de Ponta da Ilha (Ilha de Itaparica, Bahia). Rev. Bras. Zoociencias (Online), 4(2), 179-192. Retrieved in 2024, August 29, from https://periodicos.ufjf.br/index.php/zoociencias/article/view/24237

Sriket, P., Benjakul, S., Visessanguan, W. & Kijroongrojana, K., 2007. Comparative studies on chemical composition and thermal properties of black shrimp Penacus monodon and white shrimp Penacus vannamei meats. Food Chem., 103(4), 1199-1207. https://doi.org/10.1016/j.foodchem.2006.10.039.

Sweeting, C.J., Polunin, N.V.C. & Jennings, S., 2004. Tissue and fixative dependent shifts of δ13C and δ15N in preserved ecological material. Rapid Commun. Mass Spectrom., 18(21), 2587-2592. PMid:15468144. https://doi.org/10.1002/rcm.1661.

Syväranta, J., Martino, D., Kopp, D., Céréghino, R. & Santoul, F., 2011. Freezing and chemical preservatives alter the stable isotope values of carbon and nitrogen of the Asiatic clam Corbicula fluminea. Hydrobiologia 658(1), 383-388. https://doi.org/10.1007/s10750-010-0512-4.

Zylberberg, L. & Nicolas, G., 1982. Ultrastructure of scales in a teleost Carassues auratus after use of rapid freeze-fixation and freeze substitution. Cell Tissue Res., 223(2), 349-367. PMid:7066978. https://doi.org/10.1007/BF01258495.

Zylberberg, L., 2004. New data on bone matrix and its proteins. C. R. Palevol 3(6-7), 591-604. https://doi.org/10.1016/j.crpv.2004.07.012.
 


Submetido em:
29/08/2025

Aceito em:
14/10/2025

Publicado em:
17/12/2025

6942f4d9a953957e6300e4ed alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections