Acta Limnologica Brasiliensia
http://www.alb.periodikos.com.br/article/doi/10.1590/S2179-975X8424
Acta Limnologica Brasiliensia
Artigo Original

Distribution of functional feeding groups of aquatic and semi-aquatic insects on macrophytes in an artificial lentic system in southern Brazil

Distribuição dos grupos funcionais de alimentação de insetos aquáticos e semiaquáticos em macrófitas em sistema lêntico artificial no Sul do Brasil

Thaiz Ramos; Silvia Rafaela Alves Pereira; Leandro Juen

Downloads: 0
Views: 126

Abstract

Aim: To understand the distribution of functional feeding groups (FFGs) of aquatic and semiaquatic insects associated with macrophytes in a lentic system, we tested whether the abundance of FFGs varied across sampling periods and analyzed the variation of environmental variables related to FFG composition.

Methods: We evaluated the distribution of FFGs in four samplings conducted in March, May, July, and September of 2022, during different seasons of the year. The sampling locations were three sites in the Ponte Lake, located in the Porto Alegre Botanical Garden, southern Brazil. Relative abundances (%) were calculated for each family and for each FFG per sampling period. In this study, each seasonal sampling was considered a sample, and the three lake points were treated as subsamples. Data analysis was performed using Principal Component Analysis (PCA), Permutational Multivariate Analysis of Variance, and the Chi-square test (χ2).

Results: The two-axis PCA explained 90.47% of the variation. The variables that most contributed to the formation of the first axis were temperature, pH, and dissolved oxygen, with a positive relationship, while turbidity contributed most to the second axis, with a negative relationship. The χ2 test confirmed differences in FFG abundances among the sampling periods. We collected 4.872 specimens, representing 24 families distributed across five orders. Collector-gatherers were the most abundant in the study (N = 3.126), with higher abundance in autumn (N = 899), followed by predators (N = 1.385), more abundant in summer (N = 582), and collector-filterers (N = 359), also more abundant in summer (N = 158).

Conclusions: These findings contribute to a better understanding of how environmental factors drive the diversity of functional feeding groups in lentic systems and highlight the ecological role of macrophytes as complex mesohabitats that are essential for the structuring of aquatic insect communities.

Keywords

 aquatic macroinvertebrates; aquatic plant; lake; feeding habit

Resumo

Objetivo: Entender a distribuição dos grupos funcionais de alimentação (GFAs) de insetos aquáticos e semiaquáticos associados a macrófitas em um sistema lêntico, testamos se a abundância dos FFGs variou entre as coletas e analisamos a variação das variáveis ambientais relacionadas à composição dos FFGs.

Métodos: Avaliamos a distribuição dos FFGs em quatro coletas nos meses de março, maio, julho e setembro de 2022, em diferentes estações do ano. Os locais de amostragem foram três sítios no Lago da Ponte, localizado no Jardim Botânico de Porto Alegre, Sul do Brasil. Foram calculadas as abundâncias relativas (%) para cada família e para cada FFGs por período. Nesse estudo, cada coleta por período sazonal foi considerada uma amostra e as subamostras os três pontos do lago. Para análise de dados utilizamos a Análise de Componentes Principais (PCA), Análise de Variância Multivariada Permutacional e o teste de Qui-Quadrado (χ2).

Resultados: A PCA em dois eixos explicou 90.47%, as variáveis que mais contribuíram para a formação do primeiro eixo foram temperatura, pH e oxigênio dissolvido, com relação positiva e do segundo eixo foi a turbidez, com relação negativa. Com χ2 confirmamos a diferença nas abundâncias dos FFGs entre os períodos. Coletamos 4.872 espécimes, representando 24 famílias distribuídas em 5 ordens. Coletor-catador foi o mais abundante no estudo (N=3.126) e mais abundante no outono (N=899), seguido por predador (N=1.385) mais abundante no verão (N=582). E coletor-filtrador (N=359) mais abundante no verão (N=158).

Conclusões: Essas descobertas contribuem para uma melhor compreensão de como os fatores ambientais impulsionam a diversidade de grupos funcionais de alimentação em sistemas lênticos e ressaltam o papel ecológico das macrófitas, como meso-habitats complexos e essenciais para estruturação das comunidades de insetos aquáticos.

Palavras-chave

macroinvertebrados aquáticos; planta aquática; lago; hábito alimentar

Referências

Albertoni, E.F., & Palma-Silva, C., 2006. Macroinvertebrados associados a macrófitas aquáticas flutuantes em canais urbanos de escoamento pluvial (Balneário Cassino, Rio Grande, RS). Neotrop. Biol. Conserv. 1(2), 90-100.

Albertoni, E.F., Palma-Silva, C., & Furlanetto, L.M., 2014. Field evidence of the influence of aquatic macrophytes on water quality in a shallow eutrophic lake over a 13-year period. Acta Limnol. Bras. 26(2), 176-185. http://doi.org/10.1590/S2179-975X2014000200008.

Allan, J.D., Castillo, M.M., & Capps, K.A., 2021. Stream ecology: structure and function of running waters. Switzerland: Springer Nature. http://doi.org/10.1007/978-3-030-61286-3.

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.D.M., & Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Z. (Berl.) 22(6), 711-728. http://doi.org/10.1127/0941-2948/2013/0507.

Alves-da-Silva, S.M., Pereira, V.C., Moreira, C.S., & Friedrich, F., 2011. O gênero Phacus (Euglenophyceae) em lago urbano subtropical, no Jardim Botânico de Porto Alegre, Rio Grande do Sul, Brasil. Acta Bot. Bras. 25(3), 713-726. http://doi.org/10.1590/S0102-33062011000300024.

Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26(1), 32-46. http://doi.org/10.1111/j.1442-9993.2001.01070.pp.x.

Anderson, M.J., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62(1), 245-253. PMid:16542252. http://doi.org/10.1111/j.1541-0420.2005.00440.x.

Baker, N.J., Welti, E.A., Pilotto, F., Jourdan, J., Beudert, B., Huttunen, K.L., Muotka, T., Paavola, R., Göthe, E., & Haase, P., 2023. Seasonal and spatial variation of stream macroinvertebrate taxonomic and functional diversity across three boreal regions. Insect Conserv. Divers. 16(2), 266-284. http://doi.org/10.1111/icad.12623.

Bottino, F., Calijuri, M.C., & Murphy, K.J., 2013. Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions. Acta Limnol. Bras. 25(2), 192-201. http://doi.org/10.1590/S2179-975X2013000200010.

Brasil, L.S., Couceiro, S.R.M., Juen, L., & Batista, J.D., 2014. Longitudinal distribution of the functional feeding groups of aquatic insects in streams of the Brazilian Cerrado Savanna. Neotrop. Entomol. 43(5), 421-428. PMid:27193952. http://doi.org/10.1007/s13744-014-0234-9.

Brasil, L.S., Juen, L., Batista, J.D., & Pavan, M.G., 2020. The habitat integrity index and aquatic insect communities in tropical streams: a meta-analysis. Ecol. Indic. 116, 106495. http://doi.org/10.1016/j.ecolind.2020.106495.

Brito, J.S., Michelan, T.S., & Juen, L., 2021. Aquatic macrophytes are important substrates for Libellulidae (Odonata) larvae and adults. Limnology 22(1), 139-149. http://doi.org/10.1007/s10201-020-00643-x.

Chotikarn, P., Pramneechote, P., & Sinutok, S., 2022. Photosynthetic responses of freshwater macrophytes to the daily light cycle in Songkhla lagoon. Plants 11(21), 2806. PMid:36365259. http://doi.org/10.3390/plants11212806.

Christofoletti, C.A.P., Correia, J.R., Marinho, J.F.U., Souza, C.P., Guedes, T.A., Ansoar, Y., Marcato, A.C.C., & Fontanetti, C.S., 2015. Lentic habitats as study models for assessing aquatic contamination. In Daniels, J.A., ed. Advances in Environmental Research. New York: Nova Science Publishers, 87-108.

Conceição, A.A., Mormul, R.P., Thomaz, S.M., & Cunha, E.R., 2020. Influence of anthropic impacts on the functional structure of aquatic invertebrates in subtropical wetlands. Wetlands 40(6), 2287-2296. http://doi.org/10.1007/s13157-020-01317-1.

Cummins, K.W., 2021. The use of macroinvertebrate functional feeding group analysis to evaluate, monitor and restore stream ecosystem condition. Rep Glob Health Res. 4(129), http://doi.org/10.29011/2690-9480.100129.

Cummins, K.W., Merritt, R.W., & Andrade, P.C.N., 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Stud. Neotrop. Fauna Environ. 40(1), 69-89. http://doi.org/10.1080/01650520400025720.

Domínguez, E., & Fernández, H.R., 2009. Macroinvertebrados bentónicos sudamericanos: sistemática y biología. Tucumán: Fundación Miguel Lillo.

Gullan, P.J., & Cranston, P.S., 2017. Insetos: fundamentos da entomologia. Barueri: Guanabara Koogan, 5 ed.

Hamada, N., & Ferreira-Keppler, R.L., 2012. Guia ilustrado de insetos aquáticos e semiaquáticos da Reserva Florestal Ducke. Manaus: EDUA, Editora da Universidade Federal do Amazonas.

Hamada, N., Nessimian, J.L., & Querino, R.B., 2014. Insetos aquáticos na Amazônia brasileira: Taxonomia, biologia e ecologia. Petrópolis: Editora do INPA.

Instituto Brasileiro de Geografia e Estatística - IBGE, 2022. Malha Municipal Digital. Retrieved in 2023, May 13, from https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html?=&t=downloads

Instituto Nacional de Meteorologia - INMET, 2024. Banco de Dados Meteorológicos do INMET. Retrieved in 2023, May 13, from https://portal.inmet.gov.br/

Jackson, D.A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74(8), 2204-2214. http://doi.org/10.2307/1939574.

Legendre, P., & Legendre, L., 2012. Numerical ecology. USA: Elsevier, 3 ed.

Lima, M., Firmino, V.C., de Paiva, C.K.S., Juen, L., & Brasil, L.S., 2022. Land use changes disrupt streams and affect the functional feeding groups of aquatic insects in the Amazon. J. Insect Conserv. 26(2), 137-148. http://doi.org/10.1007/s10841-022-00375-6.

Luiza-Andrade, A., Montag, L.F., & Juen, L., 2017. Diversidade funcional em estudos da comunidade de macroinvertebrados aquáticos. Scientometrics 111, 1643-1656. http://doi.org/10.1007/s11192-017-2315-0.

Malacarne, T.J., Machado, N.R., & Moretto, Y., 2024. Influence of land use on the structure and functional diversity of aquatic insects in neotropical streams. Hydrobiologia 851(2), 265-280. http://doi.org/10.1007/s10750-023-05207-5.

Margulis, S., Amoni, M., Silva, R., D’Alesssandro, N., Gavioli, L., Pelegrino, P., & Pitta, G., 2023. Plano de ação Climática: P3 - Análise de riscos e vulnerabilidade climática. Porto Alegre: Secretaria de Meio Ambiente, Urbanismo e Sustentabilidade, Prefeitura de Porto Alegre. Retrieved in 2025, May 11, from https://prefeitura.poa.br/sites/default/files/usu_doc/sites/smamus/PMPOA23A_231116_P3_Relatorio_ARVC_V2.0%20%281%29.pdf

Miranda, C.V., & Schwartsburd, P.B., 2019. Salvinia (Salviniaceae) in southern and southeastern Brazil - including new taxa, new distribution records, and new morphological characters. Rev. Bras. Bot. Braz. J. Bot. 42(1), 171-188. http://doi.org/10.1007/s40415-019-00522-5.

Misteli, B., Pannard, A., Aasland, E., Harpenslager, S.F., Motitsoe, S., Thiemer, K., Llopis, S., Coetzee, J., Hilt, S., Köhler, J., Schneider, S.C., Piscart, C., & Thiébaut, G., 2023. Short-term effects of macrophyte removal on aquatic biodiversity in rivers and lakes. J. Environ. Manage. 325(Pt A), 116442. PMid:36244282. http://doi.org/10.1016/j.jenvman.2022.116442.

Monteiro-Júnior, C.S., Juen, L., & Hamada, N., 2014. Effects of urbanization on stream habitats and associated adult dragonfly and damselfly communities in central Brazilian Amazonia. Landsc. Urban Plan. 127, 28-40. http://doi.org/10.1016/j.landurbplan.2014.03.006.

Ntloko, P., Palmer, C.G., Akamagwuna, F.C., & Odume, O.N., 2021. Exploring macroinvertebrates ecological preferences and trait-based indicators of suspended fine sediment effects in the Tsitsa River and its tributaries, Eastern Cape, South Africa. Water 13(6), 798. http://doi.org/10.3390/w13060798.

Oliveira, A.L.H., & Nessimian, J.L., 2010. Spatial distribution and functional feeding groups of aquatic insect communities in Serra da Bocaina streams, southeastern Brazil. Acta Limnol. Bras. 22(4), 424-441. http://doi.org/10.4322/actalb.2011.007.

Passerini, M.D., Da Cunha-Santino, M.B., & Bianchini Junior, I., 2016. Oxygen availability and temperature as driving forces for decomposition of aquatic macrophytes. Aquat. Bot. 130, 1-10. http://doi.org/10.1016/j.aquabot.2015.12.003.

Paula-Bueno, M.C., & Fonseca-Gessner, A.A., 2015. Coleoptera associated with macrophytes of the genus Salvinia. Braz. J. Biol. 75(4, Suppl 1), S108-S118. PMid:26602356. http://doi.org/10.1590/1519-6984.06914.

Peiró, D.F., & Alves, R.G., 2006. Aquatic insects associated with macrophytes of litoral region of Ribeirão das Anhumas reservoir (Américo Brasiliense, São Paulo State, Brazil). Biota Neotrop. 6(2), 1-9. http://doi.org/10.1590/S1676-06032006000200017.

Piano, E., De Wolf, K., Bona, F., Bonte, D., Bowler, D.E., Isaia, M., Lens, L., Merckx, T., Mertens, D., van Kerckvoorde, M., De Meester, L., & Hendrickx, F., 2017. Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales. Glob. Chang. Biol. 23(7), 2554-2564. PMid:27997069. http://doi.org/10.1111/gcb.13606.

Prescott, V.A., & Eason, P.K., 2018. Lentic and lotic odonate communities and the factors that influence them in urban versus rural landscapes. Urban Ecosyst. 21(4), 737-750. http://doi.org/10.1007/s11252-018-0752-z.

R Development Core Team, 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved in 2025, May 11, from https://www.r-project.org/

Rafael, J.A., Melo, G.A., de Carvalho, C.J., Casari, S.A. & Constantino, R., 2012. Insetos do Brasil: Diversidade e Taxonomia. Ribeirão Preto: Holos.

Šálek, M., Kreisinger, J., Sedláček, F., & Albrecht, T., 2010. Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape? Landsc. Urban Plan. 98(2), 86-91. http://doi.org/10.1016/j.landurbplan.2010.07.013.

Sartori, M.G.B., 2003. A dinâmica do clima do Rio Grande do Sul: indução empírica e conhecimento científico. Terra Liv. 20(20), 27-50. http://doi.org/10.62516/terra_livre.2003.187.

Saulino, H.H.L., & Trivinho-Strixino, S., 2017. The invasive white ginger lily (Hedichium coronarium) simplifies the trait composition of an insect assemblage in the littoral zone of a Savanna reservoir. Rev. Bras. Entomol. 61(1), 60-68. http://doi.org/10.1016/j.rbe.2016.12.003.

Scheffer, M. 1998. Ecology of shallow lakes. London: Chapman & Hall.

Schmitt, T., Sánchez, R., Brown, J., & Méndez, R., 2021. Seasonality and landscape characteristics impact species community structure and temporal dynamics of East African butterflies. Sci. Rep. 11(1), 15103. PMid:34301981. http://doi.org/10.1038/s41598-021-94274-6.

Silva, C.V., & Henry, R., 2013. Aquatic macroinvertebrates associated with Eichhornia azurea (Swartz) Kunth and relationships with abiotic factors in marginal lentic ecosystems (São Paulo, Brazil). Braz. J. Biol. 73(1), 149-162. PMid:23644797. http://doi.org/10.1590/S1519-69842013000100016.

Silva-Araújo, D.S., Juen, L., Medeiros, A.S., & Couceiro, S.R.M., 2023. The presence of macrophytes changes the beta diversity of Ephemeroptera, Plecoptera, and Trichoptera (EPT) assemblages in Cerrado streams in Northeastern Brazil. Limnology 24(3), 161-169. http://doi.org/10.1007/s10201-023-00714-9.

Thomaz, S.M., & Cunha, E.R., 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol. Bras. 22(2), 218-236. http://doi.org/10.4322/actalb.02202011.

Thomaz, S.M., Dibble, E.D., Evangelista, L.R., Higuti, J., & Bini, L.M., 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw. Biol. 53(2), 358-367. http://doi.org/10.1111/j.1365-2427.2007.01898.x.

Trovillion, D.C., Sauer, E.L., Shay, G., Crone, E.R., & Preston, D.L., 2023. Habitat complexity, connectivity, and introduced fish drive pond community structure along an urban to rural gradient. Ecol. Appl. 33(4), e2828. PMid:36859728. http://doi.org/10.1002/eap.2828.

Tsyrlin, E., Carew, M., Hoffmann, A.A., Linke, S., & Coleman, R.A., 2023. Species-level dataset is required for setting biodiversity conservation priorities for freshwater macroinvertebrates in Melbourne streams. J. Environ. Manage. 331, 117186. PMid:36696758. http://doi.org/10.1016/j.jenvman.2022.117186.

Veselý, L., Boukal, D.S., Buřič, M., Kozák, P., Kouba, A., & Sentis, A., 2017. Effects of prey density, temperature and predator diversity on nonconsumptive predator-driven mortality in a freshwater food web. Sci. Rep. 7(1), 18075. PMid:29273716. http://doi.org/10.1038/s41598-017-17998-4.
 


Submetido em:
23/09/2024

Aceito em:
21/07/2025

Publicado em:
14/10/2025

68ee9780a95395157e609603 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections