Acta Limnologica Brasiliensia
http://www.alb.periodikos.com.br/article/doi/10.1590/S2179-975X8924
Acta Limnologica Brasiliensia
Original Article

Environmental impacts shape the density-size relationship of benthic macroinvertebrates in Amazonian streams (Serra dos Carajás, Pará, Brazil)

Impactos ambientais moldam a relação densidade-tamanho de macroinvertebrados bentônicos em igarapés amazônicos (Serra dos Carajás, Pará, Brasil)

Maria Eduarda Cabral Liberal; Camila Pinto Leão; Jaqueline Silva de Oliveira; Francisco Valente-Neto; Bruno Spacek Godoy

Downloads: 4
Views: 69

Abstract

Aim: Streams are small lotic ecosystems essential for aquatic biodiversity and nutrient cycling. However, they are highly susceptible to anthropogenic pressures, such as the replacement of native vegetation by plantations, which can affect aquatic communities—especially benthic macroinvertebrates, due to their sensitivity to environmental changes. While most studies rely on taxonomic metrics, there is growing evidence that changes in riparian vegetation can alter size-density relationships. We hypothesized that impacted streams would exhibit shifts in macroinvertebrate size-density patterns reflecting environmental degradation.

Methods: We sampled 15 Amazonian streams in the Serra dos Carajás region, southeastern Pará State, Brazil, an area influenced by agriculture, livestock, and mining. Sampling occurred during the dry season across two campaigns. Macroinvertebrates were collected using a kick-net, and physical-chemical variables were measured with a multiparameter probe and turbidimeter. Environmental variables were analyzed using principal component analysis, and size-density relationships were evaluated with a second-order polynomial model.

Results: Agricultural impact altered size-density relationships. Impacted sites showed reduced macroinvertebrate density across all size classes and a concentration of individuals in intermediate sizes. These changes suggest a simplification of trophic networks and decreased energy transfer efficiency.

Conclusions: Anthropogenic impacts significantly alter aquatic communities in Amazonian streams. The study demonstrates that agricultural activity reduces macroinvertebrate density in all size classes, signaling a widespread collapse of trophic networks. These findings highlight the vulnerability of Amazonian streams to human disturbances and underscore the importance of monitoring size-density relationships as indicators of ecosystem integrity.

Keywords

Amazon; environmental degradation; size spectra; biodiversity; streams

Resumo

Objetivo: Os riachos são ecossistemas lóticos de pequeno porte, essenciais para a biodiversidade aquática e o ciclo de nutrientes. No entanto, são altamente suscetíveis a pressões antrópicas, como a substituição da vegetação nativa por plantações, o que pode afetar as comunidades aquáticas — especialmente os macroinvertebrados bentônicos, por serem mais sensíveis a alterações ambientais. Embora a maioria dos estudos utilize métricas taxonômicas, há evidências de que mudanças na vegetação ripária podem afetar as relações entre tamanho e densidade dos organismos. Neste estudo, testamos a hipótese de que riachos impactados apresentariam alterações nas relações tamanho-densidade de macroinvertebrados, refletindo mudanças nas condições ambientais.

Métodos: Amostramos 15 riachos amazônicos na região da Serra dos Carajás, sudeste do estado do Pará, Brasil, uma área sujeita a atividades agropecuárias e de mineração. As coletas foram realizadas durante a estação seca, em duas campanhas. Os macroinvertebrados foram coletados com rede de arrasto (kick-net), e as variáveis físico-químicas foram medidas com sonda multiparâmetros e turbidímetro. As variáveis ambientais foram analisadas por análise de componentes principais, e as relações tamanho-densidade foram avaliadas por modelo polinomial de segunda ordem.

Resultados: O impacto agrícola alterou as relações tamanho-densidade. Os locais mais impactados apresentaram redução na densidade de macroinvertebrados em todas as classes de tamanho, com maior concentração de indivíduos em classes intermediárias. Esses padrões sugerem simplificação das redes tróficas e menor eficiência na transferência de energia.

Conclusões: Os impactos antrópicos alteram significativamente as comunidades aquáticas nos riachos amazônicos. O estudo demonstra que o impacto agrícola reduz a densidade de macroinvertebrados em todas as classes de tamanho, indicando um colapso generalizado nas redes tróficas. Esses resultados destacam a vulnerabilidade dos riachos amazônicos a distúrbios de origem antrópica e ressaltam a importância do monitoramento das relações tamanho-densidade como indicadores ecossistêmicos.

Palavras-chave

Amazônia; degradação ambiental; espectro de tamanho; biodiversidade; riachos

References

Ab Hamid, S., & Md Rawi, C.S., 2017. Application of aquatic insects (Ephemeroptera, Plecoptera and Trichoptera) in water quality assessment of Malaysian headwater. Trop. Life Sci. Res. 28(2), 143-162. PMid:28890767. http://doi.org/10.21315/tlsr2017.28.2.11.

Allan, J.D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35(1), 257-284. http://doi.org/10.1146/annurev.ecolsys.35.120202.110122.

Alonso, A., Pérez, J., Monroy, S., López-Rojo, N., Basaguren, A., Bosch, J., & Boyero, L., 2021. Loss of key riparian plant species impacts stream ecosystem functioning. Ecosystems 24(6), 1436-1449. http://doi.org/10.1007/s10021-020-00592-7.

Atkinson, C.L., Parr, T.B., van Ee, B.C., Knapp, D.D., Winebarger, M., Madoni, K.J., & Haag, W.R., 2020. Length-mass equations for freshwater unionid mussel assemblages: implications for estimating ecosystem function. Freshw. Sci. 39(3), 377-390. http://doi.org/10.1086/708950.

Barnes, A.D., Scherber, C., Brose, U., Borer, E.T., Ebeling, A., Gauzens, B., Giling, D.P., Hines, J., Isbell, F., Ristok, C., Tilman, D., Weisser, W.W., & Eisenhauer, N., 2020. Biodiversity enhances the multitrophic control of arthropod herbivory. Sci. Adv. 6(45), eabb6603. PMid:33158860. http://doi.org/10.1126/sciadv.abb6603.

Barreiros, N.M., Giarrizzo, T., & Godoy, B.S., 2023. Beta diversity of Ephemeroptera, Plecoptera and Trichoptera on multiples spatial extents in Xingu River rapids. Acta Limnol. Bras. 35, e23. http://doi.org/10.1590/s2179-975x2923.

Bispo, P.C.P., & Oliveira, L.L.G., 2007. Diversity and structure of Ephemeroptera, Plecoptera and Trichoptera (Insecta) assemblages from riffles in mountain streams of Central Brazil. Rev. Bras. Zool. 24(2), 283-293. http://doi.org/10.1590/S0101-81752007000200004.

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., & West, G.B., 2004. Toward a metabolic theory of ecology. Ecology 85(7), 1771-1789. http://doi.org/10.1890/03-9000.

Cabrera, M., Capparelli, M.V., Ñacato-Ch, C., Moulatlet, G.M., López-Heras, I., Díaz González, M., Alvear-S, D., & Rico, A., 2023. Effects of intensive agriculture and urbanization on water quality and pesticide risks in freshwater ecosystems of the Ecuadorian Amazon. Chemosphere 337, 139286. PMid:37379974. http://doi.org/10.1016/j.chemosphere.2023.139286.

Cadmus, P., Kotalik, C.J., Jefferson, A.L., Wheeler, S.H., McMahon, A.E., & Clements, W.H., 2020. Size-dependent sensitivity of aquatic insects to metals. Environ. Sci. Technol. 54(2), 955-964. PMid:31846309. http://doi.org/10.1021/acs.est.9b04089.

Cardoso, M.N., Calvão, L.B., Assis Montag, L.F., Godoy, B.S., & Juen, L., 2018. Reducing the deleterious effects of logging on Ephemeroptera communities through reduced impact management. Hydrobiologia 823(1), 191-203. http://doi.org/10.1007/s10750-018-3705-x.

Castro, D.M.P., Dolédec, S., & Callisto, M., 2018. Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecol. Indic. 84, 573-582. http://doi.org/10.1016/j.ecolind.2017.09.030.

Chang, C.W., Miki, T., Shiah, F.K., Kao, S.J., Wu, J.T., Sastri, A.R., & Hsieh, C., 2014. Linking secondary structure of individual size distribution with nonlinear size-trophic level relationship in food webs. Ecology 95(4), 897-909. PMid:24933809. http://doi.org/10.1890/13-0742.1.

Chave, J., 2013. The problem of pattern and scale in ecology: what have we learned in 20 years? Ecol. Lett. 16(Suppl 1), 4-16. PMid:23351093. http://doi.org/10.1111/ele.12048.

Clarke, A., Mac Nally, R., Bond, N., & Lake, P.S., 2010. Flow permanence affects aquatic macroinvertebrate diversity and community structure in three headwater streams in a forested catchment. Can. J. Fish. Aquat. Sci. 67(10), 1649-1657. http://doi.org/10.1139/F10-087.

Collyer, G., Perkins, D.M., Petsch, D.K., Siqueira, T., & Saito, V., 2023. Land‐use intensification systematically alters the size structure of aquatic communities in the Neotropics. Glob. Change Biol. 29(14), 4094-4106. PMid:37059700. http://doi.org/10.1111/gcb.16720.

Copatti, C.E., Schirmer, F.G., & Machado, J.V.V., 2010. Diversity of the Benthic macroinvertebrates on the evaluation of environmental quality of a microbasin in southern Brazil. Perspectiva (Online). 34(125), 79-91. Retrieved in 2025, October 17, from https://www.academia.edu/download/38576265/125_76.pdf

Dias, R.R., & Paradella, W.R., 1997. Integração de dados aéreos gamaespectrométricos com imagens TM-Landsat no mapeamento geológico da área do Pojuca, província mineral de Carajás. Rev. Bras. Geofís. 15(1), 23-34. http://doi.org/10.1590/S0102-261X1997000100003.

Fierro, P., Bertrán, C., Tapia, J., Hauenstein, E., Peña-Cortés, F., Vergara, C., Cerna, C., & Vargas-Chacoff, L., 2017. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Sci. Total Environ. 609, 724-734. PMid:28763669. http://doi.org/10.1016/j.scitotenv.2017.07.197.

García-Girón, J., Tolonen, K.T., Soininen, J., Snåre, H., Pajunen, V., & Heino, J., 2022. Anthropogenic land-use impacts on the size structure of macroinvertebrate assemblages are jointly modulated by local conditions and spatial processes. Environ. Res. 204(Pt B), 112055. PMid:34536372. http://doi.org/10.1016/j.envres.2021.112055.

Gjoni, V., & Basset, A., 2018. A cross-community approach to energy pathways across lagoon macroinvertebrate guilds. Estuaries Coasts 41(8), 2433-2446. http://doi.org/10.1007/s12237-018-0422-7.

Gjoni, V., Cozzoli, F., Rosati, I., & Basset, A., 2017. Size-density relationships: a cross-community approach to benthic macroinvertebrates in Mediterranean and Black Sea lagoons. Estuaries Coasts 40(4), 1142-1158. http://doi.org/10.1007/s12237-016-0191-0.

Gjoni, V., Marle, P., Ibelings, B.W., & Castella, E., 2022. Size-abundance relationships of freshwater macroinvertebrates in two contrasting floodplain channels of Rhone river. Water 14(5), 794. http://doi.org/10.3390/w14050794.

Godoy, B.S., Camargos, L.M., & Lodi, S., 2018. When phylogeny and ecology meet: modeling the occurrence of Trichoptera with environmental and phylogenetic data. Ecol. Evol. 8(11), 5313-5322. PMid:29938055. http://doi.org/10.1002/ece3.4031.

Godoy, B.S., Faria, A.P.J., Juen, L., Sara, L., & Oliveira, L.G., 2019. Taxonomic sufficiency and effects of environmental and spatial drivers on aquatic insect community. Ecol. Indic. 107, 105624. http://doi.org/10.1016/j.ecolind.2019.105624.

Godoy, B.S., Valente‐Neto, F., Queiroz, L.L., Holanda, L.F.R., Roque, F.O., Lodi, S., & Oliveira, L.G., 2022. Structuring functional groups of aquatic insects along the resistance/resilience axis when facing water flow changes. Ecol. Evol. 12(3), e8749. PMid:35356588. http://doi.org/10.1002/ece3.8749.

Godoy, B., & Valente-Neto, F., 2025. Dataset and R scripts for size-spectra analysis of macroinvertebrates sampled in streams across the Serra dos Carajás region, Brazilian Amazon. Brussels: Zenodo. http://doi.org/10.5281/zenodo.15080061.

Hamada, N., Nessimian, J., & Querino, R., 2019. Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Brasília: INPA, 1 ed.

Harvey, E., Gounand, I., Fronhofer, E.A., & Altermatt, F., 2018. Disturbance reverses classic biodiversity predictions in river-like landscapes. Proc. Biol. Sci. 285(1893), 20182441. PMid:30963914. http://doi.org/10.1098/rspb.2018.2441.

Jackson, D.A., 1993. Stopping rules in principal components analysis: a comparison of Heuristical and statistical approaches. Ecology 74(8), 2204-2214. http://doi.org/10.2307/1939574.

Junk, W.J., Piedade, M.T.F., Schöngart, J., Cohn-Haft, M., Adeney, J.M., & Wittmann, F., 2011. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31(4), 623-640. http://doi.org/10.1007/s13157-011-0190-7.

Juvigny‐Khenafou, N.P., Piggott, J.J., Atkinson, D., Zhang, Y., Macaulay, S.J., Wu, N., & Matthaei, C.D., 2021. Impacts of multiple anthropogenic stressors on stream macroinvertebrate community composition and functional diversity. Ecol. Evol. 11(1), 133-152. PMid:33437419. http://doi.org/10.1002/ece3.6979.

Kominoski, J.S., Marczak, L.B., & Richardson, J.S., 2011. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities. Ecology 92(1), 151-159. PMid:21560685. http://doi.org/10.1890/10-0028.1.

Kominoski, J.S., Shah, J.J.F., Canhoto, C., Fischer, D.G., Giling, D.P., González, E., Griffiths, N.A., Larrañaga, A., LeRoy, C.J., Mineau, M.M., McElarney, Y.R., Shirley, S.M., Swan, C.M., & Tiegs, S.D., 2013. Forecasting functional implications of global changes in riparian plant communities. Front. Ecol. Environ. 11(8), 423-432. http://doi.org/10.1890/120056.

Krynak, E.M., & Yates, A.G., 2020. Intensive agriculture alters the biomass size spectrum and body-mass of benthic insects: evidence from a reciprocal transfer experiment. Hydrobiologia 847(5), 1221-1235. http://doi.org/10.1007/s10750-020-04178-1.

López‐Rojo, N., Pozo, J., Pérez, J., Basaguren, A., Martínez, A., Tonin, A.M., Correa-Araneda, F., & Boyero, L., 2019. Plant diversity loss affects stream ecosystem multifunctionality. Ecology 100(12), e02847. PMid:31351003. http://doi.org/10.1002/ecy.2847.

Martínez, A., Larrañaga, A., Miguélez, A., Yvon‐Durocher, G., & Pozo, J., 2016. Land use change affects macroinvertebrate community size spectrum in streams: the case of Pinus radiata plantations. Freshw. Biol. 61(1), 69-79. http://doi.org/10.1111/fwb.12680.

McInnis, M.L., & McIver, J., 2001. Influence of off-stream supplements on streambanks of riparian pastures. J. Range Manage. 54(6), 648-652. http://doi.org/10.2307/4003665.

Monteiro, T.R., Oliveira, L.G., & Godoy, B.S., 2008. Biomonitoramento da qualidade de água utilizando macroinvertebrados bentônicos: adaptação do índice BMWP’ à bacia do rio Meia Ponte - GO. Oecol. Aust. 12(3), 553-563. http://doi.org/10.4257/oeco.2008.1203.13.

Mugnai, R., Nessimian, J.L., & Baptista, D.F., 2010. Manual de identificação de macroinvertebrados aquáticos do estado do Rio de Janeiro. Rio de Janeiro: Technical Books, 1 ed.

Nash, K.L., Allen, C.R., Barichievy, C., Nyström, M., Sundstrom, S., & Graham, N.A.J., 2014. Habitat structure and body size distributions: cross-ecosystem comparison for taxa with determinate and indeterminate growth. Oikos 123(8), 971-983. http://doi.org/10.1111/oik.01314.

Nash, L.N., Antiqueira, P.A., Romero, G.Q., Omena, P.M., & Kratina, P., 2021. Warming of aquatic ecosystems disrupts aquatic-terrestrial linkages in the tropics. J. Anim. Ecol. 90(7), 1623-1634. PMid:33955003. http://doi.org/10.1111/1365-2656.13505.

Nitschke, J., Baring, R., Kar, F., & Dittmann, S., 2024. Deriving biomass conversion factors for southern temperate benthic fauna: analytical methods matter. Estuar. Coast. Shelf Sci. 303, 108794. http://doi.org/10.1016/j.ecss.2024.108794.

Oliveira, J.S., Lodi, S., Dias, E.D.P., Guimarães, J.T.F., & Godoy, B.S., 2024. Benthic macroinvertebate community in two Amazonian upland lakes. Rev. Foco 17(2), e4154. http://doi.org/10.54751/revistafoco.v17n2-007.

Oliveira, J.S., Liberal, M.E.C., Leão, C.P., Cruz, M., Martins, J., Siqueira, R.M., & Godoy, B.S., 2025. Adaptation of the biotic index for macroinvertebrates in tributaries of the Itacaiúnas River. Limnologica 111, 126239. http://doi.org/10.1016/j.limno.2025.126239.

Paiva, F.F., Melo, D.B., Dolbeth, M., & Molozzi, J., 2023. Functional threshold responses of benthic macroinvertebrates to environmental stressors in reservoirs. J. Environ. Manage. 329, 116970. PMid:36528939. http://doi.org/10.1016/j.jenvman.2022.116970.

Pazzaglia, J., Reusch, T.B., Terlizzi, A., Marín‐Guirao, L., & Procaccini, G., 2021. Phenotypic plasticity under rapid global changes: the intrinsic force for future seagrasses survival. Evol. Appl. 14(5), 1181-1201. PMid:34025759. http://doi.org/10.1111/eva.13212.

Peck, D.V., Herlihy, A.T., Hill, B.H., Hughes, R.M., Kaufmann, P.R., Klemm, D.J., Lazorchak, J., McCormick, F.H., Peterson, S., Ringold, P., Magee, T.K., & Cappaert, M.R., 2006. Environmental monitoring and assessment program-surface waters western pilot study: field preparations manual for wadeable streams (EPA/620/R-06/003). Washington, D.C.: EPA.

Petchey, O.L., & Belgrano, A., 2010. Body-size distributions and size-spectra: universal indicators of ecological status? Biol. Lett. 6(4), 434-437. PMid:20444761. http://doi.org/10.1098/rsbl.2010.0240.

Poeppl, R.E., Dilly, L.A., Haselberger, S., Renschler, C.S., & Baartman, J.E.M., 2019. Combining soil erosion modeling with connectivity analyses to assess lateral fine sediment input into agricultural streams. Water 11(9), 1793. http://doi.org/10.3390/w11091793.

Pomeranz, J.P.F., Warburton, H.J., & Harding, J.S., 2019. Anthropogenic mining alters macroinvertebrate size spectra in streams. Freshw. Biol. 64(1), 81-92. http://doi.org/10.1111/fwb.13196.

Pomeranz, J.P.F., Junker, J.R., & Wesner, J.S., 2022. Individual size distributions across North American streams vary with local temperature. Glob. Change Biol. 28(3), 848-858. PMid:34432930. http://doi.org/10.1111/gcb.15862.

Potapov, A.M., Klarner, B., Sandmann, D., Widyastuti, R., & Scheu, S., 2019. Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. J. Anim. Ecol. 88(12), 1845-1859. PMid:31111468. http://doi.org/10.1111/1365-2656.13027.

Pott, C.M., Dala-Corte, R., & Becker, F.G., 2021. Body size responses to land use in stream fish: the importance of different metrics and functional groups. Neotrop. Ichthyol. 19(3), e210004. http://doi.org/10.1590/1982-0224-2021-0004.

R Core Team, 2021. R: a language and environment for statistical computing (Online). Vienna: R Foundation for Statistical Computing. Retrieved in 2027, October 17, from https://www.r-project.org/

Rolim, S.G., Couto, H.T.Z., Jesus, R.M., & França, J.T., 2006. Modelos volumétricos para a Floresta Nacional do Tapirapé-Aquirí, Serra dos Carajás (PA). Acta Amazon. 36(1), 107-114. http://doi.org/10.1590/S0044-59672006000100013.

Santos, D.M.D., Silva, M.F., & Lima, P.A.F., 2021. Characterization of Igarapé Chico Reis, Rorainópolis - RR and restoration of river forests in the Amazon: a theoretical framework. Res. Soc. Dev. 10(15), e341101522816. http://doi.org/10.33448/rsd-v10i15.22816.

Schmera, D., Heino, J., Podani, J., Erős, T., & Dolédec, S., 2017. Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787(1), 27-44. http://doi.org/10.1007/s10750-016-2974-5.

Schmid, P.E., Tokeshi, M., & Schmid-Araya, J.M., 2000. Relation Between Population Density and Body Size in Stream Communities. Science 289(5484), 1557-1560. PMid:10968792. http://doi.org/10.1126/science.289.5484.1557.

Sotomayor, G., Hampel, H., Vázquez, R.F., Forio, M.A.E., & Goethals, P.L., 2022. Implications of macroinvertebrate taxonomic resolution for freshwater assessments using functional traits: the Paute River Basin (Ecuador) case. Divers. Distrib. 28(8), 1735-1747. http://doi.org/10.1111/ddi.13418.

Stone, M.L., Whiles, M.R., Webber, J.A., Williard, K.W., & Reeve, J.D., 2005. Macroinvertebrate communities in agriculturally impacted southern Illinois streams: patterns with riparian vegetation, water quality, and in‐stream habitat quality. J. Environ. Qual. 34(3), 907-917. PMid:15843654. http://doi.org/10.2134/jeq2004.0305.

Thomaz, E.L., Nunes, D.D., & Watanabe, M., 2020. Effects of tropical forest conversion on soil and aquatic systems in southwestern Brazilian Amazonia: a synthesis. Environ. Res. 183, 109220. PMid:32078826. http://doi.org/10.1016/j.envres.2020.109220.

Tolonen, K.T., Hämäläinen, H., Holopainen, I.J., Mikkonen, K., & Karjalainen, J., 2003. Body size and substrate association of littoral insects in relation to vegetation structure. Hydrobiologia 499(1-3), 179-190. http://doi.org/10.1023/A:1026325432000.

Vilches, C., Giorgi, A.D.N., & Casco, M.A., 2013. Periphyton responses to non-point pollution in a natural eutrophic condition in Pampean streams. Fundam. Appl. Limnol. 183(1), 63-74. http://doi.org/10.1127/1863-9135/2013/0415.

Vinson, M.R., & Hawkins, C.P., 1998. Biodiversity of stream insects: variation at local, basin, and regional scales. Annu. Rev. Entomol. 43(1), 271-293. PMid:15012391. http://doi.org/10.1146/annurev.ento.43.1.271.

Wild, R., Gücker, B., & Brauns, M., 2019. Agricultural land use alters temporal dynamics and the composition of organic matter in temperate headwater streams. Freshw. Sci. 38(3), 566-581. http://doi.org/10.1086/704828.

Yadamsuren, O., Chuluunbat, S., Enkhtaivan, S., Hayford, B., & Goulden, C., 2022. Effects of grazing on taxonomic and functional diversity of benthic macroinvertebrates of six tributary streams of the eastern shore of Lake Hövsgöl, Mongolia. Inland Waters 12(4), 526-538. http://doi.org/10.1080/20442041.2022.2099218.

Zou, W., Tolonen, K.T., Zhu, G., Qin, B., Zhang, Y., Cao, Z., Peng, K., Cai, Y., & Gong, Z., 2019. Catastrophic effects of sand mining on macroinvertebrates in a large shallow lake with implications for management. Sci. Total Environ. 695, 133706. PMid:31419677. http://doi.org/10.1016/j.scitotenv.2019.133706.
 


Submitted date:
10/17/2024

Accepted date:
06/24/2025

Publication date:
08/18/2025

68a33f7ba95395267b02c1a4 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections